首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   12篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   6篇
  1995年   11篇
  1994年   2篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有88条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
This paper reports on the isolation of a novel class of plant serine/threonine protein kinase genes, MsK-1 , MsK-2 and MsK-3 . They belong to the superfamily of cdc2 -like genes, but show highest identity to the Drosophila shaggy and rat GSK-3 proteins (66–70%). All of these kinases share a highly conserved catalytic protein kinase domain. Different amino-terminal extensions distinguish the different proteins. The different plant kinases do not originate from differential processing of the same gene as is found for shaggy , but are encoded by different members of a gene family. Similarly to the shaggy kinases, the plant kinases show different organ-specific and stage-specific developmental expression patterns. Since the shaggy kinases play an important role in intercellular communication in Drosophila development, the MsK kinases are expected to perform a similar function in plants.  相似文献   
5.
6.
Two-hybrid screening of a tobacco BY-2 cell suspension cDNA library using the p43(Ntf6) mitogen-activated protein (MAP) kinase as bait resulted in the isolation of a cDNA encoding a protein with features characteristic of a MAP kinase kinase (MEK), which has been called NtMEK1. Two-hybrid interaction analysis and pull-down experiments showed a physical interaction between NtMEK1 and the tobacco MAP kinases p43(Ntf6) and p45(Ntf4), but not p43(Ntf3). In kinase assays NtMEK1 preferentially phosphorylated p43(Ntf6). Functional studies in yeast showed that p43(Ntf6) could complement the yeast MAP kinase mutant mpk1 when co-expressed with NtMEK1, and that this complementation depended on the kinase activity of p43(Ntf6). Expression analysis showed that the NtMEK1 and ntf6 genes are co-expressed both in plant tissues and following the induction of cell division in leaf pieces. These data suggest that NtMEK1 is an MEK for the p43(Ntf6) MAP kinase.  相似文献   
7.
Stressing the role of MAP kinases in mitogenic stimulation   总被引:1,自引:0,他引:1  
In yeast and animal cells, distinct subfamilies of mitogen-activated protein kinases (MAPKs) have evolved for transmitting different types of signals, such as the extracellular signal-regulated kinase (ERK) for mitogenic stimuli and differentiation, p38 and JUN kinase (JNK) for stress factors. Based on sequence analysis, the presently known plant MAPKs are most similar to ERKs, even though compelling evidence implies a role in various forms of biotic and abiotic stress responses. However, knowledge of their involvement in controlling proliferation is just emerging. A subgroup of the plant MAPKs, containing the alfalfa MMK3 and tobacco NTF6, are only active in mitotic cells and their localisation to the cell plate suggests a role in cytokinesis. An upstream regulator of MAPKs, the tobacco NPK1, appears to be also activated during mitosis. NPK1 might be associated and regulated by a microtubule motor protein. The localisation of NPK1 to the cell plate and its mitosis-specific activation suggest that together with NTF6 it could constitute a mitotic MAPK signalling module in tobacco. NPK1 appears to have a second role in repression of auxin-induced gene expression. MAPKs might also be involved in signalling within the meristems as suggested by the recruitement of a small G-protein to the CLAVATA 1 receptor-like protein kinase upon activation. In animal and yeast cells some of the small G-proteins relay signals from receptors to MAPK pathways.  相似文献   
8.
 Profilins are structurally well conserved low molecular weight (12–15 kDa) eukaryotic proteins which interact with a variety of physiological ligands: (1) cytoskeletal components, e.g., actin; (2) polyphosphoinositides, e.g., phosphatidylinositol-4,5-bisphosphate; (3) proline-rich proteins, e.g., formin homology proteins and vasodilatator-stimulated phosphoprotein. Profilins may thus link the microfilament system with signal transduction pathways. Plant profilins have recently been shown to be highly crossreactive allergens which bind to IgE antibodies of allergic patients and thus cause symptoms of type I allergy. We expressed and purified from Escherichia coli profilins from birch pollen (Betula verrucosa), humans (Homo sapiens) and yeast (Schizosaccharomyces pombe) and demonstrated that each of these profilins is able to form stable homo- and heteropolymers via disulphide bonds in vitro. Circular dichroism analysis of oxidized (polymeric) and reduced (monomeric) birch pollen profilin indicates that the two states have similar secondary structures. Using 125I-labeled birch pollen, yeast and human profilin in overlay experiments, we showed that disulphide bond formation between profilins can be disrupted under reducing conditions, while reduced as well as oxidized profilin states bind to actin and profilin-specific antibodies. Exposure of profilin to oxidizing conditions, such as when pollen profilins are liberated on the surface of the mucosa of atopic patients, may lead to profilin polymerization and thus contribute to the sensitization capacity of profilin as an allergen. Received: 25 February 1998 / Revision accepted: 12 May 1998  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号