首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   7篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   10篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   8篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1909年   1篇
  1908年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
Multiple signaling pathways participate in the regulation of bone remodeling, and pathological negative balance in the regulation results in osteoporosis. However, interactions of signaling pathways that act comprehensively in concert to maintain bone mass are not fully understood. We investigated roles of parathyroid hormone receptor (PTH/PTHrP receptor) signaling in osteoblasts in unloading-induced bone loss using transgenic mice. Hind limb unloading by tail suspension reduced bone mass in wild-type mice. In contrast, signaling by constitutively active PTH/PTHrP receptor (caPPR), whose expression was regulated by the osteoblast-specific Col1a1 promoter (Col1a1-caPPR), suppressed unloading-induced reduction in bone mass in these transgenic mice. In Col1a1-caPPR transgenic (Tg) mice, hind limb unloading suppressed bone formation parameters in vivo and mineralized nodule formation in vitro similarly to those observed in wild-type mice. In addition, serum osteocalcin levels and mRNA expression levels of type I collagen, Runx2 and Osterix in bone were suppressed by unloading in both wild-type mice and Tg mice. However, in contrast to unloading-induced enhancement of bone resorption parameters in wild-type mice, Col1a1-caPPR signaling suppressed, rather than enhanced, osteoclast number and osteoclast surface as well as urinary deoxypyridinoline excretion upon unloading. Col1a1-caPPR signaling also suppressed mRNA expression levels of RANK and c-fms in bone upon unloading. Although the M-CSF and monocyte chemoattractant protein 1 (MCP-1) mRNA levels were enhanced in control Tg mice, these levels were suppressed in unloaded Tg mice. These results indicated that constitutive activation of PTH/PTHrP receptor signaling in osteoblastic cells suppresses unloading-induced bone loss specifically through the regulation of osteoclastic activity.  相似文献   
2.
Prenotochord cell sorting is regarded as one of the first cell sorting events in early chordate development. We recently demonstrated that this sorting event occurs in vitro, although the mediator of this activity remains unidentified. Herein, we report the isolation of a full-length cDNA clone of Axial protocadherin (AXPC), the homologue of human protocadherin-1 (PCD1). AXPC encodes a transmembrane protein (AXPC) that is expressed exclusively in the notochord at the neurula stage and in the pronephros, somites, heart, optic vesicle, otic vesicle, and distinct parts of the brain at the tailbud stage. Cell dissociation and reaggregation assays and in vivo microinjection experiments demonstrated that cells overexpressing a membrane-tethered form of AXPC (MT-AXPC) acquired the same adhesive properties as prenotochord cells. Moreover, microinjection of either mRNA encoding the dominant negative form of AXPC (DN-AXPC) or morpholino oligonucleotides interferes with the sorting activity of prenotochord cells and normal axis formation. This study suggests that AXPC is necessary and sufficient for prenotochord cell sorting in the gastrulating embryo, and may also mediate sorting events later in development.  相似文献   
3.
We reported previously that a radiation-induced adaptive response existed in the late period of embryogenesis, and that radiation-induced apoptosis in the predigital regions was responsible for digital defects in embryonic ICR mice. To investigate the possible involvement of the Trp53 gene and radiation-induced apoptosis in radiation-induced adaptive responses in embryogenesis, the present study was conducted using Trp53 wild-type (Trp53(+/+)) and Trp53 heterozygous (Trp53(+/-)) embryonic mice of the C57BL/6 strain. The existence of a radioadaptive response in the Trp53(+/+) embryonic mice was demonstrated by irradiating the embryos with 5 or 30 cGy on embryonic day 11 prior to a challenging irradiation at 3 Gy on embryonic day 12. The two conditioning doses at 5 and 30 cGy significantly suppressed the induction of apoptosis by the challenging dose in the predigital regions of limb buds in the Trp53(+/+) embryonic mice, while no such effect was found in the Trp53(+/-) embryonic mice. These findings indicate that induction of a radioadaptive response in embryogenesis is related to Trp53 gene status and the occurrence of radiation-induced apoptosis.  相似文献   
4.
We reported previously that in utero radiation-induced apoptosis in the predigital regions of embryonic limb buds was responsible for digital defects in mice. To investigate the possible involvement of the Trp53 gene, the present study was conducted using embryonic C57BL/6J mice with different Trp53 status. Susceptibility to radiation-induced apoptosis in the predigital regions and digital defects depended on both Trp53 status and the radiation dose; i.e., Trp53 wild-type (Trp53(+/+)) mice appeared to be the most sensitive, Trp53 heterozygous (Trp53(+/-)) mice were intermediate, and Trp53 knockout (Trp53(-/-)) mice were the most resistant. These results indicate that induction of apoptosis and digital defects by prenatal irradiation in the later period of organogenesis are mediated by the Trp53 gene. These findings suggest that the wild-type Trp53 gene may be an intrinsic genetic susceptibility factor that is responsible for certain congenital defects induced by prenatal irradiation.  相似文献   
5.
DNA damage induced with ionizing radiation is considered one of the main causes of cell inactivation. Several methods including gel electrophoresis, pulsed-field gel electrophoresis, neutral filter elution method, neutral sedimentation and electron microscopy have been applied to analyze this type of DNA damage. A new method employing an atomic force microscope (AFM) for nanometer-level-structure analysis of DNA damage induced with gamma-irradiation is introduced in this report. Structural changes of plasmid DNA on a molecular size scale of about 3 kbp were visually analyzed by AFM after irradiation with 60Co gamma-rays at doses of 1.9, 5.6, and 8.3 kGy. Three forms of plasmid DNA, closed circular (intact DNA), open circular (DNA with a single strand break) and linear form (DNA with a double strand break) were visualized by dynamic force mode AFM after gamma-irradiation. The torsional feature of the plasmid DNA was visualized better with AFM than with a transmission electron microscope (TEM). All three forms of plasmid DNA were observed in the sample irradiated with gamma-rays at the dose of 1.9 kGy. Open circular and linear forms were observed in the samples irradiated with gamma-rays at doses of 5.6 and 8.3 kGy, though no closed circular form was observed. A shortening of the length of a linear form of DNA irradiated with 5.6 and 8.3 kGy gamma-rays was observed by AFM. Structural changes of DNA after gamma-irradiation were visualized by AFM at nanometer level resolution. In addition, shortening of the length of the linear form of DNA after radiation exposure was observed by AFM.  相似文献   
6.
It is important to evaluate the health effects of low-dose-rate or low-dose radiation in combination with chemicals as humans are exposed to a variety of chemical agents. Here, we examined combined genotoxic effects of low-dose-rate radiation and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the most carcinogenic tobacco-specific nitrosamine, in the lung of gpt delta transgenic mice. In this mouse model, base substitutions and deletions can be separately analyzed by gpt and Spi- selections, respectively. Female gpt delta mice were either treated with gamma-irradiation alone at a dose rate of 0.5, 1.0 or 1.5 mGy/h for 22 h/day for 31 days or combined with NNK treatments at a dose of 2 mg/mouse/day, i.p. for four consecutive days in the middle course of irradiation. In the gpt selection, the NNK treatments enhanced the mutation frequencies (MFs) significantly, but no obvious combined effects of gamma-irradiation were observable at any given radiation dose. In contrast, NNK treatments appeared to suppress the Spi- large deletions. In the Spi- selection, the MFs of deletions more than 1 kb in size increased in a dose-dependent manner. When NNK treatments were combined, the dose-response curve became bell-shaped where the MF at the highest radiation dose decreased substantially. These results suggest that NNK treatments may elicit an adaptive response that eliminates cells bearing radiation-induced double-strand breaks in DNA. Possible mechanisms underlying the combined genotoxicity of radiation and NNK are discussed, and the importance of evaluation of combined genotoxicity of more than one agent is emphasized.  相似文献   
7.
8.
Aromatase, which is responsible for the conversion of androgens to estrogens, is a potential therapeutic target for the selective lowering of estrogen levels in patients with estrogen-dependent breast cancer. To develop a novel class of aromatase inhibitors, we tested series of 2- and 4-substituted (halogeno, methyl, formyl, methoxy, nitro, and amino) estrones (7 and 9), as well as series of 6alpha- and 6beta-substituted (alkyl, phenalkyl, and alkoxy) estrones (13 and 14), and their estradiol analogs (8, 10, 11, and 12) as aromatase inhibitors. All of the inhibitors examined blocked the androstenedione aromatization in a competitive manner. Introduction of halogeno and methyl functions at C-2 of estrone as well as that of a phenalkyl or methyl function at the C-6alpha or C-6beta position markedly increased affinity to aromatase (apparent K(i) value=0.10-0.66 microM for the inhibitors versus 2.5 microM for estrone). 6alpha-Phenylestrone (13c) was the most powerful inhibitor among the estrogens studied, and its affinity was comparable to that of the androgen substrate androstenedione. Estradiol analogs were much weaker inhibitors than the corresponding estrone compounds in each series, indicating that the 17-carbonyl group plays a critical role in the formation of a thermodynamically stable enzyme-inhibitor complex.  相似文献   
9.
The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.  相似文献   
10.
The complex gene regulatory networks governed by growth factor signaling are still poorly understood. In order to accelerate the rate of progress in uncovering these networks, we explored the usefulness of interspecies sequence comparison (phylogenetic footprinting) to identify conserved growth factor response elements. The promoter regions of two direct target genes of Bone Morphogenetic Protein (BMP) signaling in Xenopus, Xvent2 and XId3, were compared with the corresponding human and/or mouse counterparts to identify conserved sequences. A comparison between the Xenopus and human Vent2 promoter sequences revealed a highly conserved 21 bp sequence that overlaps the previously reported Xvent2 BMP response element (BRE). Reporter gene assays using Xenopus animal pole ectodermal explants (animal caps) revealed that this conserved 21 bp BRE is both necessary and sufficient for BMP responsiveness. We combine the same phylogenetic footprinting approach with luciferase assays to identify a highly conserved 49 bp BMP responsive region in the Xenopus Id3 promoter. GFP reporters containing multimers of either the Xvent2 or XId3 BREs appear to recapitulate endogenous BMP signaling activity in transgenic Xenopus embryos. Comparison of the Xvent2 and the XId3 BRE revealed core sequence features that are both necessary and sufficient for BMP responsiveness: a Smad binding element (SBE) and a GC-rich element resembling an OAZ binding site. Based on these findings, we have implemented genome scanning to identify over 100 additional putative target genes containing 2 or more BRE-like sequences which are conserved between human and mouse. RT-PCR and in situ analyses revealed that this in silico approach can effectively be used to identify potential BMP target genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号