首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
In many organisms, trehalose protects against several environmental stresses, such as heat, desiccation, and salt, probably by stabilizing protein structures and lipid membranes. Trehalose synthesis in yeast is mediated by a complex of trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2). In this study, genes encoding TPS1 and TPS2 were isolated from Zygosaccharomyces rouxii (designated ZrTPS1 and ZrTPS2, respectively). They were functionally identified by their complementation of the tps1 and tps2 yeast deletion mutants, which are unable to grow on glucose medium and with heat, respectively. Full-length ZrTPS1 cDNA is composed of 1476 nucleotides encoding a protein of 492 amino acids with a molecular mass of 56 kDa. ZrTPS2 cDNA consists of 2843 nucleotides with an open reading frame of 2700 bp, which encodes a polypeptide of 900 amino acids with a molecular mass of 104 kDa. The amino acid sequence encoded by ZrTPS1 has relatively high homology with TPS1 of Saccharomyces cerevisiae and Schizosaccharomyces pombe, compared with TPS2. Western blot analysis showed that the antibody against S. cerevisiae TPS1 recognizes ZrTPS1. Under normal growth conditions, ZrTPS1 and ZrTPS2 were highly and constitutively expressed, unlike S. cerevisiae TPS1 and TPS2. Salt stress and heat stress reduced the expression of the ZrTPS1 and ZrTPS2 genes, respectively.  相似文献   
3.
Plant gene responses to frequency-specific sound signals   总被引:1,自引:0,他引:1  
We identified a set of sound-responsive genes in plants using a sound-treated subtractive library and demonstrated sound regulation through mRNA expression analyses. Under both light and dark conditions, sound up-regulated expression of rbcS and ald. These are also light-responsive genes and these results suggest that sound could represent an alternative to light as a gene regulator. Ald mRNA expression increased significantly with treatment at 125 and 250 Hz, whereas levels decreased significantly with treatment at 50 Hz, indicating a frequency-specific response. To investigate whether the ald promoter responds to sound, we generated transgenic rice plants harboring a chimeric gene comprising a fusion of the ald promoter and GUS reporter. In three independent transgenic lines treated with 50 or 250 Hz for 4 h, GUS mRNA expression was up-regulated at 250 Hz, but down-regulated at 50 Hz. Thus, the sound-responsive mRNA expression pattern observed for the ald promoter correlated closely with that of ald, suggesting that the 1,506 bp ald promoter is sound-responsive. Therefore, we propose that in transgenic plants, specific frequencies of sound treatment could be used to regulate the expression of any gene fused to the ald promoter.  相似文献   
4.
5.
Mitogen-activated protein kinases (MAPK) signalling cascades are activated by extracellular stimuli such as environmental stresses and pathogens in higher eukaryotic plants. To know more about MAPK signalling in plants, aMAPK cDNA clone, OsMAPK33, was isolated from rice. The gene is mainly induced by drought stress. In phylogenetic analysis, OsMAPK33 (Os02g0148100) showed approximately 47-93% identity at the amino acid level with other plant MAPKs. It was found to exhibit organ-specific expression with relatively higher expression in leaves as compared with roots or stems, and to exist as a single copy in the rice genome. To investigate the biological functions of OsMAPK33 in rice MAPK signalling, transgenic rice plants that either overexpressed or suppressed OsMAPK33 were made. Under dehydration conditions, the suppressed lines showed lower osmotic potential compared with that of wild-type plants, suggesting a role of OsMAPK33 in osmotic homeostasis. Nonetheless, the suppressed lines did not display any significant difference in drought tolerance compared with their wild-type plants. With increased salinity, there was still no difference in salt tolerance between OsMAPK33-suppressed lines and their wild-type plants. However, the overexpressing lines showed greater reduction in biomass accumulation and higher sodium uptake into cells, resulting in a lower K+/Na+ ratio inside the cell than that in the wild-type plants and OsMAPK33-suppressed lines. These results suggest that OsMAPK33 could play a negative role in salt tolerance through unfavourable ion homeostasis. Gene expression profiling of OsMAPK33 transgenic lines through rice DNA chip analysis showed that OsMAPK33 altered expression of genes involved in ion transport. Further characterization of downstream components will elucidate various biological functions of this novel rice MAPK.  相似文献   
6.
7.
Zinc finger proteins function in plant tolerances to stresses from cold, dehydration, and salt. To determine the mechanisms for those underlying defenses, we previously used cDNA microarrays and northern blot analysis to identify a gene for the ring zinc finger protein (RDCP1) from hot pepper (Capsicum annuum). In that study, we showed that theRDCP1 gene was strongly induced by cold stress and, to a lesser degree, by ABA and high salt Here, we have used a Ti-plasmid andAgrobacterium- mediated transformation to engineerRDCP1 under the control of the CaMV35S promoter for constitutive expression in tobacco. The resultant RDCP1 transgenic plants exhibit significantly increased tolerance to low temperatures. Moreover, some of those transgenics have greater drought tolerance. In addition, none of the RDCP1 transgenic plants show any visible alterations from the wild phenotype. These current results demonstrate the biological role of RDCP1 in conferring stress tolerance.  相似文献   
8.
We have isolated and characterized a putative rice MAPK gene (designated OsMAPK44) encoding for a protein of 593 amino acids that has the MAPK family signature and phosphorylation activation motif, TDY. Alignment of the predicted amino acid sequences of OsMAPK44 showed high homology with other rice MAPKs. Under normal conditions, the OsMAPK44 gene is highly expressed in root tissues, but relatively less in leaf and stem tissues of the japonica type rice plant (O. sativa L. Donggin). mRNA expression of the gene is highly inducible by salt and drought treatment, but not by cold treatment. Moreover, the mRNA level of the OsMAPK44 is up-regulated by exogenously applied Abscisic acid (ABA) and H2O2. When we compared the OsMAPK44 gene expression level between a salt sensitive indica cultivar (IR64) and a salt resistant indica cultivar (Pokkali), they showed some difference in expression kinetics with the salt treatment. OsMAPK44 gene expression in Pokkali was slightly up-regulated within 30 min and then disappeared rapidly, while IR64 maintained its expression for 1 h following down-regulation. Under the salinity stress, OsMAPK44 overexpression transgenic rice plants showed less damage and greater ratio of potassium and sodium than OsMAPK44 suppressed transgenic lines did, suggesting that OsMAPK44 may have a role to prevent damages due to working for favorable ion balance in the presence of salinity.  相似文献   
9.
10.
The Arabidopsis AHL gene encodes a 3′(2′),5′-bisphosphate nucleotidase (BPNTase) involved in the reductive sulfate activation pathway. A bacterial expression vector containing AHL cDNA was randomly mutagenized with hydroxylamine and transformed into the E. coli cysteine auxotrophic mutant cysQ. Bacterial colonies that did not show evidence of complementation, i.e. those that exhibited slower growth on cysteine-free medium, were selected for further study. Sequencing of the AHL cDNA in one such clone revealed the conversion of cytosine 635 (C635) to thymine, resulting in an Alanine (A212) to Valine substitution. This microbial complementation procedure is useful in BPNTase structure-activity studies for biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号