首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2022年   1篇
  2015年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
The problem of binding of microbial cells to an adsorbent matrix during in situ recovery of bioproducts from a fermentation broth has been addressed by shielding the adsorbent with a thin layer of a non-ionic polymer. Extractive bioconversion of lactic acid by integrating ion-exchange adsorption with the fermentation stage was studied. The effect of coating of the ion-exchanger with agarose on product recovery and cell adsorption was evaluated. Extractive fermentation with both uncoated and coated resin resulted in an increase in reactor productivity as compared to the normal fermentation. The free cell density in the system with agarose-coated beads was similar to that in control fermentation, but was significantly lower in the system with the uncoated ion-exchanger. Electron microscopic scanning of the bead surface after passage of the fermentation broth showed cells attached to the native adsorbent but not to the coated one.  相似文献   
2.
Selective recovery of lactate dehydrogenase using affinity foam   总被引:3,自引:0,他引:3  
Selective isolation of lactate dehydrogenase (LDH) from porcine muscle extract was studied using foam generated from the vigorous stirring of a non-ionic surfactant, Triton X-114 derivatized with Cibacron blue. The cloud point of the surfactant-dye conjugate was higher than that of the native Triton X-114, and also the foam prepared from the affinity surfactant was more rigid taking a longer time to collapse. The equilibrium dissociation constant between pure LDH and surfactant-dye conjugate was 5.0 microM as compared to the value of 2.2 microM for the enzyme and free dye as measured by differential spectroscopy. The isolation procedure involved mixing of the porcine muscle extract with the affinity foam, separating and collapsing the foam, and warming the solution formed to 37 degrees C to yield the surfactant-dye phase and an aqueous phase containing the enzyme. The effect of surfactant concentration and protein load on enzyme recovery and purification was investigated. Under optimal conditions, LDH was quantitatively recovered with high purification factor in a very short time. Both recovery and purification were higher when foam prepared from an equivalent mixture of surfactant-dye conjugate and unmodified surfactant was used. The selectivity of interaction between LDH and detergent-dye conjugate was confirmed by lowered recovery when NADH was included during the binding step.  相似文献   
3.
The gene encoding an alkaline active cyclodextrin glycosyltransferase (CGTase) from the alkaliphilic B. agaradhaerens LS-3C was cloned and sequenced. It encodes a mature polypeptide of 679 amino acids with a molecular mass of 76488 Da. The deduced amino acid sequence of the mature CGTase revealed 99 and 95% identity to the CGTase sequences from the other B. agaradhaerens strains, DSM 8721T and 9948, respectively. The next closest identity was of 59% with B. clarkii enzyme. CGTases from B. agaradhaerens, B. clarkii, and B. firmus/lentus formed a phylogenetically separated cluster from the other CGTases of Bacillus spp. origin. A number of usually conserved residues in the CGTases were found to be replaced in the sequence of B. agaradhaerens enzyme. The sequence analysis indicated the enzyme to be close to the so-called `intermediary enzymes' in the -amylase family.  相似文献   
4.
The effect on primary, secondary, tertiary and quaternary structure of Pseudozyma (formerly Candida) antarctica lipase B (PalB) on exposure to hydrogen peroxide was investigated using nano-electrospray ionization-mass spectrometry (nano-ESI-MS), liquid chromatography tandem mass spectrometry (LC/MS/MS), circular dichroism (CD), and dynamic light scattering (DLS). Treatment with hydrogen peroxide generated heavier protein variants, with a mass gain that increased with increasing incubation time. Furthermore, elevated concentration of H2O2 was shown to result in partial fragmentation of the protein. Proteolytic digestion of the enzyme gave primary sequence coverage of more than 90%, revealing oxidation of methionine, tryptophan and cystine residues. The active site histidine was not observed in oxidized form in any of the experiments. However, oxidation of cystine to cysteic acid indicated disruption of disulphide bridges, and CD evaluations confirmed that severe changes to the secondary structure towards random coil had occurred. The structural changes could be an effect of the observed amino acid side chain oxidations, and was correlated with deactivation of the lipase. From DLS experiments, it was seen that the lipase exposed to both high temperature and H2O2 formed large and intermediate sized aggregates, not observed for the heat-treated enzyme. The findings reported here could lay the basis for developing enzyme variants with higher oxidative stability.  相似文献   
5.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   
6.
A gene encoding a lipolytic enzyme amplified from the alkaliphilic bacterium Bacillus halodurans LBB2 was cloned into the pPICZαB vector and integrated into the genome of the protease deficient yeast strain Pichia pastoris SMD1168H. This previously undescribed enzyme was produced in active form, and cloning in frame with the Saccharomyces cerevisiae secretion signal (α-factor) enabled extracellular accumulation of correctly processed enzyme, with an apparent molecular mass of 30 kDa. In shake-flask cultivations, very low production levels were obtained, but these were significantly improved by use of a “batch-induced” cultivation technique which allowed a maximum enzyme activity of 14,000 U/l using p-nitrophenyl butyrate (C-4) as a substrate and a final extracellular lipolytic enzyme concentration of approximately 0.2 g/l. Partial characterization of the produced enzyme (at pH 9) revealed a preference for the short-chain ester (C-4) and significant but lower activity towards medium (C5-C6) and long (C16 and C18) fatty acid chain-length esters. In addition, the enzyme exhibited true lipase activity (7,300 U/l) using olive oil as substrate and significant levels of phospholipase activity (6,400 U/l) by use of a phosphatidylcholine substrate, but no lysophospholipase activity was detected using a lysophosphatidylcholine substrate.  相似文献   
7.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   
8.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   
9.
Two cultivation steps were used for production of biomass and ectoine by Halomonas boliviensis, respectively. The optimization of some nutrient parameters in each step was investigated by using response surface methodology. Twenty and 12 experiments were performed to attain optimal conditions for biomass and ectoine production, respectively. The model predicted a maximum biomass concentration of 3.34 g/L on optimization of NH4Cl, K2HPO4, and MgSO4•7H2O concentrations during the first cultivation, while a maximum ectoine concentration of 1.27 g/L was predicted on optimizing NaCl and monosodium glutamate concentrations in the second cultivation. The experimental values obtained (3.36 g biomass/L and 1.25 g ectoine/L) were in good agreement with the predicted values. The optimized conditions were also used for two-step 1.5-L fed-batch fermentations. In the first step, biomass concentration of 28.7 g/L was obtained while in the second step biomass concentration increased to 63 g/L. Ectoine concentration of 9.2 g/L was obtained, and the overall ectoine productivity was 6.3 g/L/day, being among the highest reported so far.  相似文献   
10.
Phytase is used as a feed additive for degradation of antinutritional phytate, and the enzyme is desired to be highly thermostable for it to withstand feed formulation conditions. A Bacillus sp. MD2 showing phytase activity was isolated, and the phytase encoding gene was cloned and expressed in Escherichia coli. The recombinant phytase exhibited high stability at temperatures up to 100°C. A higher enzyme activity was obtained when the gene expression was done in the presence of calcium chloride. Production of the enzyme by batch- and fed-batch cultivation in a bioreactor was studied. In batch cultivation, maintaining dissolved oxygen at 20–30% saturation and depleting inorganic phosphate below 1 mM prior to induction by IPTG resulted in over 10 U/ml phytase activity. For fed–batch cultivation, glucose concentration was maintained at 2–3 g/l, and the phytase expression was increased to 327 U/ml. Induction using lactose during fed-batch cultivation showed a lag phase of 4 h prior to an increase in the phytase activity to 71 U/ml during the same period as IPTG-induced production. Up to 90% of the total amount of expressed phytase leaked out from the E. coli cells in both IPTG- and lactose-induced fed-batch cultivations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号