首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   26篇
  国内免费   1篇
  2021年   6篇
  2018年   5篇
  2017年   7篇
  2016年   8篇
  2015年   8篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   12篇
  2010年   11篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  1999年   3篇
  1998年   10篇
  1997年   8篇
  1996年   7篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1991年   7篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1970年   4篇
  1969年   5篇
  1968年   2篇
  1965年   2篇
  1920年   2篇
排序方式: 共有274条查询结果,搜索用时 458 毫秒
1.
Ca2+-dependent proteases isolated from chicken gizzard and bovine aortic smooth muscle were compared with respect to subunit autolysis and the role of autolysis in modulating enzyme activity. The protease isolated from chicken gizzard was a heterodimer consisting of 80,000- and 30,000-dalton subunits. The protease isolated under identical conditions from bovine aorta consisted of 75,000- and 30,000-dalton subunits. In the presence of Ca2+, both enzymes underwent autolysis of their 30,000-dalton subunits with conversion to an 18,000-dalton species. In addition, the 80,000-dalton subunit of the gizzard protease was degraded to a 76,000-dalton form. The Ca2+ concentrations required for autolysis of the 30,000-dalton subunits were different for the two enzymes (i.e. gizzard: K0.5 Ca2+ = 335 microM; aortic: K0.5 Ca2+ = 1,250 microM) although in both cases, stimulation of autolysis by Ca2+ exhibited positive cooperativity. When compared with respect to kinetics of substrate degradation, the native forms of the smooth muscle Ca2+-dependent proteases (gizzard, GIIa = 80,000/30,000-dalton heterodimer; bovine aortic, IIa = 75,000/30,000-dalton heterodimer) exhibited a lag phase in product appearance. On the other hand, the autolyzed forms (gizzard, GIIb = 76,000/18,000-dalton heterodimer; bovine aortic, IIb = 75,000/18,000-dalton heterodimer) exhibited linear rates of substrate degradation. These results were analyzed in terms of autolysis of the 30,000-dalton subunits as determined by the conversion of this subunit to its 18,000 dalton form. For both enzymes, the time course for the autolytic transition, 30,000----18,000 daltons, and Ca2+-dependence of the apparent rate constants for this transition were found to correlate well with the lag phase in enzymatic activity. No such correlation could be established for the 80,000----76,000 dalton autolytic transition of the high molecular mass subunit of the gizzard protease. Our results suggest that catalytic activity of the Ca2+-dependent proteases isolated from gizzard and bovine aortic smooth muscle requires autolysis of the 30,000-dalton subunit. The native or unautolyzed forms of these enzymes appear to be proenzymes that can be activated by autolysis.  相似文献   
2.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   
3.
4.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
5.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
6.
Branchinecta sandiegonensis (Crustacea: Anostraca) is a narrow range endemic fairy shrimp discontinuously distributed in ephemeral pools on coastal mesas in San Diego County, USA. Ten populations across the range of the species were subjected to allozyme analysis for eleven loci. The species exhibits low variability (P95 =9.1–45.5) and one third of the loci tested did not conform to Hardy-Weinberg equilibrium expectations. The species also exhibited a high degree of genetic differentiation between populations. F ST values (fixation index) for most pairs of populations were above 0.25 (0.036–0.889).Low genetic variability and high genetic structure may result from low gene flow and founder effects due to habitat fragmentation and the lack of potential vectors for cyst dispersal. The unpredictable rainfall of the region also creates potential for variable population sizes which could affect structure and variability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
Adult rat heart muscle cells were isolated after simultaneous perfusion of multiple (two to eight) hearts with buffered salt solutions containing collagenase and hyaluronidase. Yields (35 to 50% of ventricular weight with approximately 70% viability) are quantitatively suitable for metabolic studies. Viability has been determined by the ability of intact cells to exclude trypan blue and the inability of intact cells to oxidize exogenous succinate. Micrographs show that the fine structure of the isolated cells is well ordered. Cell concentrations of glycogen, glucose 6-phosphate, citrate, and various enzymes were similar to those of intact heart. ATP and creatine phosphate concentrations were lower than in whole hearts. Adenosine 3′,5′-monophosphate concentrations were somewhat elevated. Deoxyribonucleic acid was lower than in whole tissue. The isolated cells retain certain metabolic control mechanisms. The uncoupler of oxidative phosphorylation, 2,4-dinitrophenol, increased oxygen consumption severalfold, whereas exogenous ADP had no effect on respiration. Under anaerobic conditions the rates of glucose utilization and lactate production were faster than in the presence of oxygen, indicating retention of the Pasteur effect. The addition of glucose and insulin caused a decrease in oxygen uptake or the Crabtree effect. Exogenously added pyruvate decreased glycolytic flux and produced a pronounced increase in intracellular citrate and glucose 6-phosphate. Isoproterenol stimulated adenylate cyclase activity of the isolated cells at the same concentrations effective with intact heart preparations. Isoproterenol and glucagon caused the activation of phosphorylase. The cells deteriorated as a function of incubation time, as indicated by a decrease in ATP content and a loss of lactate dehydrogenase into the medium. Cell deterioration was greatly accelerated by Ca2+ at concentrations greater than 10?5m.  相似文献   
8.
Chicken gizzard smooth muscle contains large amounts of Ca2+-activated protease activity. Approximately 15 mg of purified enzyme can be obtained from 1 kg of fresh muscle. The enzyme consists of two subunits (Mr = 80,000 and 30,000) present in a 1:1 molar ratio. In the presence of CaCl2, the 80,000/30,000-dalton heterodimer (form I) is rapidly converted by limited autolysis to a 76,000/18,000-dalton species (form II). Both the 80,000- and 30,000-dalton subunits are degraded simultaneously. Moreover, the Ca2+ dependence for autolysis (K0.5 = 300 microM) is identical for both subunits. Neither the time course nor the Ca2+ dependence of the autolytic conversion reaction is altered by 10- and 20-fold molar excesses of substrate. Limited autolysis markedly reduces the Ca2+ requirement for substrate degradation. Using N-[ethyl-2-3H]maleimide-labeled 27,000-dalton cardiac myosin light chains as substrate, the Ca2+ requirement of form I was found to be quite high (K0.5 = 150 microM). Under similar conditions, the Ca2+ requirement of form II was 30-fold lower (K0.5 = 5 microM). Limited autolysis did not alter the specific activity of the enzyme. Our results demonstrate that smooth muscle contains an abundant amount of Ca2+-activated protease. Moreover, autolysis of this enzyme may play an important regulatory role by converting the native form to a species that is fully active at physiological levels of intracellular calcium ion.  相似文献   
9.
As a corollary to X-ray crystallographic work performed by H. Muirhead, detailed studies on crystalline pig muscle phosphoglucose isomerase have been conducted to establish its basic physical and chemical properties. The enzyme species being investigated by X-ray diffraction has been determined to be isoenzyme III. Its molecular weight in the native state was found to be 132,000, its s020,w value to be 7·25 S. The enzyme is composed of two subunits of equal molecular weight (66,000). Its amino acid composition is largely similar to that of rabbit muscle phosphoglucose isomerase, with the significant exception that the pig muscle isomerase contains only three sulfhydryl groups per polypeptide chain (two of them accessible to titration with p-mercuribenzoate) as compared with twice that number for the rabbit muscle enzyme. This low number of sulfhydryl groups is interpreted as being responsible for the ease with which heavy-atom, isomorphous derivatives could be prepared for the pig muscle enzyme by Shaw & Muirhead (1977).  相似文献   
10.
Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays (‘PathSig-dPCR’) for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号