首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   14篇
  2023年   1篇
  2021年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
Mitochondrial respiratory control in the myocardium   总被引:5,自引:0,他引:5  
The heart muscle has proved to be a practical model for studying respiratory control in intact tissues. It also demonstrates that control at the level of the respiratory chain is augmented by metabolic control at the substrate level as exemplified by the very narrow range of changes in the redox state of the mitochondrial NADH/NAD couple even during extensive changes in ATP and oxygen consumption. The behaviour of mitochondria when isolated can largely be duplicated in the intact myocardium. Moreover, the high intracellular concentrations of enzymes, coenzymes and adenine nucleotides create conditions of high reaction rates, enabling the formation of a near equilibrium network of certain main pathways. This equilibrium network in connection with metabolic regulation of the hydrogen pressure upon the matrix NADH/NAD pool is a prerequisite for the regulation of cellular respiration at a high efficiency of energy transfer. Experimentation on the intact myocardium also seems to be capable of resolving some of the uncertainties about prevailing mechanisms for the regulation of cellular respiration.  相似文献   
2.
Proton extrusion during ferricyanide reduction by NADH-generating substrates or succinate was studied in isolated rat liver mitochondria with the use of optical indicators. NN'-Dicyclohexylcarbodi-imide (DCCD) caused a decrease of 84% in the H+/e- ratio of NADH:cytochrome c reduction, but a decrease of only 49% in that of succinate:cytochrome c reduction, even though electron transfer was decreased equally in both spans. The data indicate that a DCCD-sensitive channel operates in the NADH:ubiquinone oxidoreductase region of the respiratory chain.  相似文献   
3.
1. The contribution of Co2 fixation to the anaplerotic mechanisms in the myocardium was investigated in isolated perfused rat hearts. 2. K+-induced arrest of the heart was used to elicit a transition in the concentrations of the intermediates of the tricarboxylic acid cycle. 3. Incorporation of 14C from [14]bicarbonate into tricarboxylic acid-cycle intermediates was measured and the rates of the reactions of the cycle were estimated by means of a linear optimization program which solves the differential equations describing a simulation model of the tricarboxylic acid cycle and related reactions. 4. The results showed that the rate of CO2 fixation is dependent on the metabolic state of the myocardium. Upon a sudden diminution of cellular ATP consumption, the pool size of the tricarboxylic acid-cycle metabolites increased and the rate of label incorporation from [14C]bicarbonate into the cycle metabolites increased simultaneously. The computer model was necessary to separate the rapid equilibration between bicarbonate and some metabolites from the potentially anaplerotic reactions. The main route of anaplerosis during metabolite accumulation was through malate + oxaloacetate. Under steady-state conditions there was a constant net outward flow from the tricarboxylic acid cycle via the malate + oxaloacetate pool, with a concomitant anaplerotic flow from metabolites forming succinyl-CoA (3-carboxypropionyl-CoA).  相似文献   
4.
1. Hepatic lipogenesis in vivo and the activities of enzymes associated with fatty acid synthesis in the liver were studied in rats fed for 21 days on liquid diets containing ethanol. 2. The ethanol-fed rats developed a moderate hepatic triacylglycerol accumulation during this period. When carbohydrate was replaced by ethanol in the diet, the rate of fatty acid synthesis was slower in the ethanol-fed rats on low-, medium- and high-fat diets than in the appropriate controls. However, when the fat/carbohydrate ratio was kept the same in the ethanol-fed and control rats, ethanol had no influence on the rate of fatty acid synthesis. 3. Glucose 6-phosphate dehydrogenase activity was lower in the ethanol-fed group. ;Malic' enzyme activity did not change during the ethanol treatment when the fat/carbohydrate ratio was kept unchanged. 4. The ATP citrate lyase activity was lower in the ethanol-fed rats on all diets, whereas acetyl-CoA synthetase activity was independent of the composition of the control diet, but was lower in the ethanol-fed rats, in which the concentration of the active form of pyruvate dehydrogenase was also lower. 5. It is concluded that hepatic fatty acid synthesis does not play any major role in ethanol-induced triacylglycerol accumulation. Careful design of the diets is necessary to reveal the specific effects of ethanol on the enzymes associated with lipogenesis.  相似文献   
5.
Spectrophotometric and fluorimetric substrate couple titrations and potentiometric spectrophotometric titrations were used to determine the oxidation-reduction potentials of components showing absorbance or fluorescence at the wavelengths attributable to the flavoproteins of mitochondria fractionated using digitonin together with sonication. A pure mitoplast fraction devoid of cytochrome b5 contamination could be obtained using 230 µg digitonin/mg of mitochondrial protein. The digitonin-soluble fraction contained a species havingE m 7 .4=–123 mV and probably represents the outer membrane flavoproteins. The inner membrane-matrix fraction, treated with ultrasound, provided evidence of a flavoprotein species with low redox potential (E m 7 .4=–302 mV) in the matrix fraction. The –302 mV component is probably lipoamide dehydrogenase. A high redox potential species withE m 7 .4=+19 mV in titrations with the succinate fumarate couple was located in the inner membrane vesicles and is probably identical with succinate dehydrogenase. The electron-transferring flavoprotein (ETF) was isolated from bovine heart mitochondria and itsE m 7 .4=–74 mV determined. The component in the matrix fraction with an apparentE m 7 .4=–56 mV probably represents ETF, and that in the inner membrane fraction with an apparentE m 7 .4=–43 mV the NADH dehydrogenase flavoprotein. A component in an apparently low concentration withE m 7 .4=+30 mV was detected in the inner membrane fraction. This probably represents the ETF-dehydrogenase flavoprotein. The origin of the flavoprotein fluorescence of mitochondria and intact tissues is discussed.  相似文献   
6.
1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.  相似文献   
7.
The effect of clofibrate [ethyl 2-(4-chlorophenoxy)-2-methylpropionate] administered subcutaneously to rats (600 mg/kg per day for 7 days) on the hepatic concentrations of the citric acid cycle intermediates and malonyl-CoA was studied. The concentration of isocitrate increased by 40%, whereas that of oxaloacetate, succinyl-CoA and malate tended to decrease. No significant changes were found in the concentrations of 2-oxoglutarate, fumarate, succinate and citrate. A significant decrease in hepatic malonyl-CoA content was found. This reduction of malonyl-CoA may be the reason for the reported increase in hepatic fatty acid oxidation during clofibrate treatment.  相似文献   
8.
9.
10.
Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations.Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the Km value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号