首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有12条查询结果,搜索用时 171 毫秒
1.
Climate extremes and land-use changes can have major impacts on the carbon cycle of ecosystems. Their combined effects have rarely been tested. We studied whether and how the abandonment of traditionally managed mountain grassland changes the resilience of carbon dynamics to drought. In an in situ common garden experiment located in a subalpine meadow in the Austrian Central Alps, we exposed intact ecosystem monoliths from a managed and an abandoned mountain grassland to an experimental early-summer drought and measured the responses of gross primary productivity, ecosystem respiration, phytomass and its components, and of leaf area index during the drought and the subsequent recovery period. Across all these parameters, the managed grassland was more strongly affected by drought and recovered faster than the abandoned grassland. A bivariate representation of resilience confirmed an inverse relationship of resistance and recovery; thus, low resistance was related to high recovery from drought and vice versa. In consequence, the overall perturbation of the carbon cycle caused by drought was larger in the managed than the abandoned grassland. The faster recovery of carbon dynamics from drought in the managed grassland was associated with a significantly higher uptake of nitrogen from soil. Furthermore, in both grasslands leaf nitrogen concentrations were enhanced after drought and likely reflected drought-induced increases in nitrogen availability. Our study shows that ongoing and future land-use changes have the potential to profoundly alter the impacts of climate extremes on grassland carbon dynamics.  相似文献   
2.
Well‐defined productivity–precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity–precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation–reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation–manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity–precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land‐model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation–reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.  相似文献   
3.
Effects of endurance training on O2 transport and on iron status are well documented in the literature. Only a few data are available concerning the consequences of strenuous anaerobic muscular exercise on red cell function. This study was performed to test the influence of strength training alone on parameters of red cell O2 transport and iron status. Twelve healthy untrained males participated in a strength-training programme of 2-h sessions four times a week lasting 6 weeks. After 6 weeks a small but significant reduction of haemoglobin (Hb; -5.4 g.l-1) was found (p less than 0.05). Mean red cell volume did not change, but a pronounced decrease of mean cell Hb concentration (from 329.2 g.l-1, SE 2.5 to 309.8 g.l-1, SE 1.2; p less than 0.001) and mean corpuscular Hb (from 29.6 pg, SE 0.4 to 27.7 pg, SE 0.3; p less than 0.01) was observed. Serum ferritin decreased significantly by 35% (p less than 0.01); transferrin, serum iron and iron saturation of transferrin were unaltered. Serum haptoglobin concentration was diminished significantly by 30.5% (p less than 0.01). The reticulocyte count had already increased after 3 weeks of training (p less than 0.05) and remained elevated during the following weeks. Strength training had no significant influence on the O2 partial pressure at which Hb under standard conditions was 50% saturated, red cell 2,3-diphosphoglycerate and ATP concentration as well as on erythrocytic glutamate-oxalacetate transaminase activity. The data demonstrate that mechanical stress of red cells due to the activation of large muscle masses led to increased intravascular haemolysis, accompanied by a slightly elevated erythropoiesis, which had no detectable influence on Hb-O2 affinity. Training caused an initial depletion of body iron stores (prelatent iron deficiency). Although Hb had decreased by the end of the training phase a true "sports anaemia" could not be detected.  相似文献   
4.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   
5.

Introduction

Prostate cancer is known to have a tendency to metastasize to bone. Skeletal scintigraphy can be used to show multiple lesions. Diffuse metastasis, which is not infrequent in prostate cancer, can also be suspected on the basis of a 'super scan'. However, this phenomenon in nuclear medicine has several other causes that need to be considered.

Case presentation

A patient with a history of prostate cancer presented with pleural fluid, peripheral edema and bone pain. A super scan of the bone was found which suggested diffuse skeletal metastasis of the prostate cancer but the patient also had a prostate specific antigen level which was not compatible with this diagnosis. Further investigations revealed the paraneoplastic phenomenon of hypertrophic osteoarthropathy, related to an incurable carcinoma of the lung, to be the cause of the super scan.

Conclusion

A super scan is characterized by a high bone to soft tissue ratio on skeletal scintigraphy, with a uniform symmetrical increase in bone uptake and diminished to absent renal visualization ('absent kidney sign'). It can be seen in a variety of diseases in which there is a diffusely increased bone turnover. Diffuse skeletal metastasis of a well-differentiated prostate carcinoma is unlikely to be the cause of a super scan when the prostate specific antigen level is not elevated. This is the first report of a super scan due to pulmonary hypertrophic osteoarthropathy which can be seen in lung carcinoma and other pulmonary diseases.  相似文献   
6.
The relationship between flow motion and tissue oxygenation was investigated during hemorrhage/retransfusion with and without dopamine in 14 pigs. During 45% bleed, jejunal microvascular hemoglobin O(2) saturation (HBjO(2)) and mucosal tissue Po(2) (Po(2)muc) were recorded in seven control and seven dopamine-treated animals. Mean arterial pressure and systemic O(2) delivery decreased during hemorrhage and returned to baseline after retransfusion. Hemorrhage decreased Po(2)muc from 33 +/- 2.8 to 13 +/- 1.6 mmHg and HBjO(2) from 53 +/- 4.9% to 32 +/- 3.9%, respectively, in control animals. During reperfusion, Po(2)muc and HBjO(2) remained low. Dopamine increased Po(2)muc from 28 +/- 4.3 to 45 +/- 4.6 mmHg and HBjO(2) from 54 +/- 5.7% to 69 +/- 1.5% and attenuated the decrease in Po(2)muc and HBjO(2) during hemorrhage. After retransfusion, dopamine restored Po(2)muc and HBjO(2) to baseline. Control animals developed rhythmic HBjO(2) oscillations with increasing amplitude (frequency, 4.5 to 7.6 cycles/min) and showed an inverse relationship between Po(2)muc and HBjO(2) oscillation amplitude. Dopamine prevented regular flow motion. The association between decreased Po(2)muc and increased oscillations in HBjO(2) after normalization of systemic hemodynamics and O(2) transport in control animals suggests a cause-and-effect relationship between low tissue Po(2) and flow motion activity within the jejunal microcirculation.  相似文献   
7.
Reports from the literature and our own data on red cell 2,3-DPG and its importance for unloading O2 from Hb to the tissues during exhaustive exercise are contradictory. We investigated red cell metabolism during incremental bicycle ergometry of various durations. Furthermore changes in blood composition occurring during exercise were simulated under in vitro conditions. The effect of a moderate (11.2 mmol X l-1 lactate, pH = 7.127) and severe (18 mmol X l-1 lactate, pH = 6.943) lactacidosis on red cell 2,3-DPG concentration was compared with the effect of similar acidosis induced by HCl. Our data indicate that the concentration of 2,3-DPG in red cells depends on the degree of lactacidosis, but not on the duration of exercise. During moderate lactacidosis red cell 2,3-DPG remains unchanged. This can be explained by an interruption of red cell glycolysis on the PK and GAP-DH step caused by a lactate and pyruvate influx into the erythrocyte, as well as an intraerythrocytic acidosis and a drop in the NAD/NADH ratio. During severe lactacidosis and HCL-induced acidosis a decrease in 2,3-DPG due to an inhibition of 2,3-DPGmutase and other glycolytic enzymes can be found. Mathematical correction of the observed P-50 value for the decrease in 2,3-DPG occurring during severe lactacidosis showed that a decrease in Hb-O2-affinity during strenuous exercise depends on the degree of lactacidosis and temperature elevation.  相似文献   
8.
The supply of soil respiration with recent photoassimilates is an important and fast pathway for respiratory loss of carbon (C). To date it is unknown how drought and land‐use change interactively influence the dynamics of recent C in soil‐respired CO2. In an in situ common‐garden experiment, we exposed soil‐vegetation monoliths from a managed and a nearby abandoned mountain grassland to an experimental drought. Based on two 13CO2 pulse‐labelling campaigns, we traced recently assimilated C in soil respiration during drought, rewetting and early recovery. Independent of grassland management, drought reduced the absolute allocation of recent C to soil respiration. Rewetting triggered a respiration pulse, which was strongly fuelled by C assimilated during drought. In comparison to the managed grassland, the abandoned grassland partitioned more recent C to belowground respiration than to root C storage under ample water supply. Interestingly, this pattern was reversed under drought. We suggest that these different response patterns reflect strategies of the managed and the abandoned grassland to enhance their respective resilience to drought, by fostering their resistance and recovery respectively. We conclude that while severe drought can override the effects of abandonment of grassland management on the respiratory dynamics of recent C, abandonment alters strategies of belowground assimilate investment, with consequences for soil‐CO2 fluxes during drought and drought‐recovery.  相似文献   
9.
Van Sundert  Kevin  Brune  Veronika  Bahn  Michael  Deutschmann  Mario  Hasibeder  Roland  Nijs  Ivan  Vicca  Sara 《Plant and Soil》2020,448(1-2):353-368
Plant and Soil - When soil is rewetted after drought, typically a transient pulse of mineralization and other microbial processes occur. This “Birch effect” translates into a...  相似文献   
10.
The microvascular distribution of oxygen was studied in the arterioles and venules of the awake hamster window chamber preparation to determine the contribution of vascular smooth muscle contraction to oxygen consumption of the microvascular wall during arginine vasopressin (AVP)-induced vasoconstriction. AVP was infused intravenously at the clinical dosage (0.0001 IU.kg(-1).min(-1)) and caused a significant arteriolar constriction, decreased microvascular flow and functional capillary density, and a substantial rise in arteriolar vessel wall transmural Po(2) difference. AVP caused tissue Po(2) to be significantly lowered from 25.4 +/- 7.4 to 7.2 +/- 5.8 mmHg; however, total oxygen extraction by the microcirculation increased by 25%. The increased extraction, lowered tissue Po(2), and increased wall oxygen concentration gradient are compatible with the hypothesis that vasoconstriction significantly increases vessel wall oxygen consumption, which in this model appears to constitute an important oxygen-consuming compartment. This conclusion was supported by the finding that the small percentage of the vessels that dilated in these experiments had a vessel wall oxygen gradient that was smaller than control and which was not determined by changes in tissue Po(2). These findings show that AVP administration, which reduces oxygen supply by vasoconstriction, may further impair tissue oxygenation by the additional oxygen consumption of the microcirculation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号