首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   11篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
1.
The present study, utilizing thioglycolamido as the reactive group, describes the synthesis and pharmacology of a new opioid antagonist affinity ligand, 6-thioglycolamido-6-desoxynaltrexone (TAN) and compares TAN with a related known compound, 6-bromoacetamido-6-desoxynaltrexone (BAN). Both compounds were tested for their reversible and irreversible inhibition of [3H]naloxone binding to calf brain membranes. Reversible binding of BAN and TAN had Ki values of 1×10–9 and 1×10–10 M, respectively as determined by log probit plots. Irreversible binding was determined after extensive washing to remove all non-covalently bound ligand. At a concentration of 5×10–8 and 1×10–8 M for BAN and TAN irreversible binding was inhibited 50% of the maximum value. A study of the time course of irreversible inhibition of [3H]naloxone binding revealed that maximal inhibition occurred within 5 min with a concentration of 1×10–7 M of either agent. TAN but not BAN when administered systematically to mice produced an antinociceptive effect as measured by the writhing test. When administered intracerebraventricularly BAN did not block morphine-induced analgesia for more than 2 hr; whereas, with a single ED50 dose of 20 nmoles of TAN i.c.v. morphine-induced analgesia was almost completely blocked for a period of over 24 hr, as determined by the tail flick test. Although the SH group of TAN were required for the covalent interaction with opioid receptors, the site of TAN's interaction appears to involve other than protein SH groups.  相似文献   
2.

Background

Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma and infects about 3% world population. Response to interferon therapy depends upon the genotype of the virus and factors associated with the host. Despite a good response to interferon therapy, a considerable number of genotype 3a infected patients remains unalleviated.

Results

In total forty-nine patients including twenty-five non-responders (non-SVR) and twenty-four responders (SVR) were recruited. Patients were tested for viral status at different intervals and the isolated RNA was sequenced for the NS5A region in both groups. The comparison of PKRBD of HCV between the SVR and non-SVR patients did not confirm any significant difference in the number of mutations. However, when the sequence downstream to the PKRBD of NS5A was compared, two important statistically significant mutations were observed; at positions 2309 (Ala to Ser) and 2326 (Gly to Ala). These mutations were then analysed for tertiary protein structure and important structural changes were observed. Statistically significant difference was also observed when age groups of patients were compared; younger patients showed better response than the older ones.

Conclusions

The region between PKRBD and IRRDR may be important for prediction of response to IFN therapy for genotype 3a. ISDR and PKRBD have not shown any involvement in treatment response. Further functional analyses of these findings can help in understanding the involvement of the NS5A region in interferon treatment of HCV-3a infected patients.
  相似文献   
3.
Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.  相似文献   
4.
Four π‐extended phosphoniumfluorene electrolytes (π‐PFEs) are introduced as hole‐blocking layers (HBL) in inverted architecture planar perovskite solar cells with the structure of ITO/PEDOT:PSS/MAPbI3/PCBM/HBL/Ag. The deep‐lying highest occupied molecular orbital energy level of the π‐PFEs effectively blocks holes, decreasing contact recombination. It is demonstrated that the incorporation of π‐PFEs introduces a dipole moment at the PCBM/Ag interface, resulting in significant enhancement of the built‐in potential of the device. This enhancement results in an increase in the open‐circuit voltage of the device by up to 120 mV, when compared to the commonly used bathocuproine HBL. The results are confirmed both experimentally and by numerical simulation. This work demonstrates that interfacial engineering of the transport layer/contact interface by small molecule electrolytes is a promising route to suppress nonradiative recombination in perovskite devices and compensates for a nonideal energetic alignment at the hole‐transport layer/perovskite interface.  相似文献   
5.
BACKGROUND: Many organisms undergo closed mitosis and locate tubulin and mitotic kinases to nuclei only during mitosis. How this is regulated is unknown. Interestingly, the NIMA kinase of Aspergillus nidulans interacts with two nuclear pore complex (NPC) proteins and NIMA is required for mitotic localization of the Cdk1 kinase to nuclei. Therefore, we wished to define the mechanism by which the NPC is regulated during A. nidulans' closed mitosis. RESULTS: The structural makeup of the NPC is dramatically changed during A. nidulans' mitosis. At least five NPC proteins disperse throughout the cell during mitosis while at least three structural components remain at the NPC. These modifications correlate with marked changes in the function of the NPC. Notably, during mitosis, An-RanGAP is not excluded from nuclei, and five other nuclear or cytoplasmic proteins investigated fail to locate as they do during interphase. Mitotic modification of the NPC requires NIMA and Cdk1 kinase activation. NIMA appears to be particularly important. Most strikingly, ectopic induction of NIMA promotes mitotic-like changes in NPC structure and function during S phase. Furthermore, NIMA locates to the NPC during entry into mitosis, and a dominant-negative version of NIMA that causes G2 delay dwells at the NPC. CONCLUSIONS: We conclude that partial NPC disassembly under control of NIMA and Cdk1 in A. nidulans may represent a new mechanism for regulating closed mitoses. We hypothesize that proteins locate by their relative binding affinities within the cell during A. nidulans' closed mitosis, analogous to what occurs during open mitosis.  相似文献   
6.
7.
The main extracellular matrix binding component of the dystrophin-glycoprotein complex, α-dystroglycan (α-DG), which was originally isolated from rabbit skeletal muscle, is an extensively O-glycosylated protein. Previous studies have shown α-DG to be modified by both O-GalNAc- and O-mannose-initiated glycan structures. O-Mannosylation, which accounts for up to 30% of the reported O-linked structures in certain tissues, has been rarely observed on mammalian proteins. Mutations in multiple genes encoding defined or putative glycosyltransferases involved in O-mannosylation are causal for various forms of congenital muscular dystrophy. Here, we explore the glycosylation of purified rabbit skeletal muscle α-DG in detail. Using tandem mass spectrometry approaches, we identify 4 O-mannose-initiated and 17 O-GalNAc-initiated structures on α-DG isolated from rabbit skeletal muscle. Additionally, we demonstrate the use of tandem mass spectrometry-based workflows to directly analyze glycopeptides generated from the purified protein. By combining glycomics and tandem mass spectrometry analysis of 91 glycopeptides from α-DG, we were able to assign 21 different residues as being modified by O-glycosylation with differing degrees of microheterogeneity; 9 sites of O-mannosylation and 14 sites of O-GalNAcylation were observed with only two sites definitively exhibiting occupancy by either type of glycan. The distribution of identified sites of O-mannosylation suggests a limited role for local primary sequence in dictating sites of attachment.  相似文献   
8.
Fennel (Foeniculum vulgare Mill) is a high-value medicinal and essential oil bearing plant used extensively in pharmaceutical, food and cosmetic industries. A pot experiment was carried out in the natural conditions of net house to resolve whether the foliar application of salicylic acid (SA) might enhance the growth, yield and essential oil production of fennel. Plants were sprayed three times with SA. The first spray was carried out at 40?days after sowing (DAS); the second and third sprays were applied one and 2?weeks later, the plants were sprayed with deionised water (control) and different concentrations of SA (10?5, 10?4 and 10?3?M). The foliar spray of SA at 10?4?M significantly enhanced the vegetative growth (shoot and root lengths, fresh and dry weights), physiological and biochemical characteristics (chl ??a??, chl ??b??, total chlorophyll and carotenoids contents, nitrate reductase activity, carbonic anhydrase activity, leaf-N, -P and -K contents), yield characteristics (number of umbels and fruits, 1,000-seed weight and seed yield) and essential oil yield of fennel. GLC analysis revealed the significant increase in the components of essential oil, viz. trans-anethole (80.4?C84.7?%), methyl chavicol (2.3?C2.5?%) and fenchone (5.6?C7.9?%). It was concluded that foliar spray of SA at 10?4?M might be employed for enhancing the plant growth as well as yield and quality of essential oil of fennel.  相似文献   
9.

Background

Mutations in the NPHS1 and NPHS2 genes are among the main causes of early-onset and familial steroid resistant nephrotic syndrome respectively. This study was carried out to assess the frequencies of mutations in these two genes in a cohort of Pakistani pediatric NS patients.

Methods

Mutation analysis was carried out by direct sequencing of the NPHS1 and NPHS2 genes in 145 nephrotic syndrome (NS) patients. This cohort included 36 samples of congenital or infantile onset NS cases and 39 samples of familial cases obtained from 30 families.

Results

A total of 7 homozygous (6 novel) mutations were found in the NPHS1 gene and 4 homozygous mutations in the NPHS2 gene. All mutations in the NPHS1 gene were found in the early onset cases. Of these, one patient has a family history of NS. Homozygous p.R229Q mutation in the NPHS2 gene was found in two children with childhood-onset NS.

Conclusions

Our results show a low prevalence of disease causing mutations in the NPHS1 (22% early onset, 5.5% overall) and NPHS2 (3.3% early onset and 3.4% overall) genes in the Pakistani NS children as compared to the European populations. In contrast to the high frequency of the NPHS2 gene mutations reported for familial SRNS in Europe, no mutation was found in the familial Pakistani cases. To our knowledge, this is the first comprehensive screening of the NPHS1 and NPHS2 gene mutations in sporadic and familial NS cases from South Asia.  相似文献   
10.
Cysteine proteases play critical biological roles in both intracellular and extracellular processes. We characterized Ce-cpl-1, a Caenorhabditis elegans cathepsin L-like cysteine protease. RNA interference with Ce-cpl-1 activity resulted in embryonic lethality and a transient delayed growth of larvae to egg producing adults, suggesting an essential role for cpl-1 during embryogenesis, and most likely during post-embryonic development. Cpl-1 gene (Ce-cpl-1:lacZ) is widely expressed in the intestine and hypodermal cells of transgenic worms, while the fusion protein (Ce-CPL-1::GFP) was expressed in the hypodermis, pharynx, and gonad. The CPL-1 native protein accumulates in early to late stage embryos and becomes highly concentrated in gut cells during late embryonic development. CPL-1 is also present near the periphery of the eggshell as well as in the cuticle of larval stages suggesting that it may function not only in embryogenesis but also in further development of the worm. Although the precise role of Ce-CPL-1 during embryogenesis is not yet clear it could be involved in the processing of nutrients responsible for synthesis and/or in the degradation of eggshell. Moreover, an increase in the cpl-1 mRNA is seen in the intermolt period approximately 4 h prior to each molt. During this process Ce-CPL-1 may act as a proteolytic enzyme in the processing/degradation of cuticular or other proteins. Similar localization of a related cathepsin L in the filarial nematode Onchocerca volvulus, eggshell and cuticle, suggests that some of the Ce-CPL-1 function during development may be conserved in other parasitic nematodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号