首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7728篇
  免费   3849篇
  国内免费   1724篇
  13301篇
  2025年   94篇
  2024年   286篇
  2023年   293篇
  2022年   388篇
  2021年   440篇
  2020年   445篇
  2019年   467篇
  2018年   298篇
  2017年   292篇
  2016年   321篇
  2015年   466篇
  2014年   661篇
  2013年   578篇
  2012年   798篇
  2011年   735篇
  2010年   616篇
  2009年   611篇
  2008年   673篇
  2007年   679篇
  2006年   595篇
  2005年   523篇
  2004年   392篇
  2003年   355篇
  2002年   269篇
  2001年   293篇
  2000年   281篇
  1999年   196篇
  1998年   110篇
  1997年   96篇
  1996年   62篇
  1995年   53篇
  1994年   33篇
  1993年   30篇
  1992年   58篇
  1991年   52篇
  1990年   43篇
  1989年   67篇
  1988年   45篇
  1987年   42篇
  1986年   50篇
  1985年   32篇
  1984年   30篇
  1983年   28篇
  1982年   45篇
  1981年   31篇
  1979年   34篇
  1977年   20篇
  1974年   25篇
  1972年   21篇
  1970年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Cav1.4 channels are unique among the high voltage-activated Ca2+ channel family because they completely lack Ca2+-dependent inactivation and display very slow voltage-dependent inactivation. Both properties are of crucial importance in ribbon synapses of retinal photoreceptors and bipolar cells, where sustained Ca2+ influx through Cav1.4 channels is required to couple slow graded changes of the membrane potential with tonic glutamate release. Loss of Cav1.4 function causes severe impairment of retinal circuitry function and has been linked to night blindness in humans and mice. Recently, an inhibitory domain (ICDI: inhibitor of Ca2+-dependent inactivation) in the C-terminal tail of Cav1.4 has been discovered that eliminates Ca2+-dependent inactivation by binding to upstream regulatory motifs within the proximal C terminus. The mechanism underlying the action of ICDI is unclear. It was proposed that ICDI competitively displaces the Ca2+ sensor calmodulin. Alternatively, the ICDI domain and calmodulin may bind to different portions of the C terminus and act independently of each other. In the present study, we used fluorescence resonance energy transfer experiments with genetically engineered cyan fluorescent protein variants to address this issue. Our data indicate that calmodulin is preassociated with the C terminus of Cav1.4 but may be tethered in a different steric orientation as compared with other Ca2+ channels. We also find that calmodulin is important for Cav1.4 function because it increases current density and slows down voltage-dependent inactivation. Our data show that the ICDI domain selectively abolishes Ca2+-dependent inactivation, whereas it does not interfere with other calmodulin effects.Retinal photoreceptors and bipolar cells contain a highly specialized type of synapse designated ribbon synapses. Glutamate release in these synapses is controlled via graded and sustained changes in membrane potential that are maintained throughout the duration of a light stimulus (1, 2). In recent years, it became clear that Cav1.4 L-type Ca2+ channels are the main channel subtype converting these analog input signals into corresponding permanent glutamate release (1, 35). In support of this mechanism, mutations in the Cav1.4 gene have been identified in patients suffering from congenital stationary night blindness type 2 and X-linked cone rod dystrophy (68). Individuals displaying congenital stationary night blindness type 2 as well as mice deficient in Cav1.4 typically have abnormal electroretinograms that indicate a loss of neurotransmission from the rods to second order bipolar cells, which is attributable to a loss of Cav1.4 (3).Retinal Cav1.4 channels are set apart from other high voltage-activated (HVA)3 Ca2+ channels by their total lack of Ca2+-dependent inactivation (CDI) and their very slow voltage-dependent inactivation (VDI). Recently, we and others discovered an inhibitory domain (ICDI: inhibitor of CDI) in the C-terminal tail of the Cav1.4 channel that eliminates Ca2+-dependent inactivation in this channel by binding to upstream regulatory motifs (9, 10). Importantly, introducing the ICDI into the backbone of Cav1.2 or Cav1.3 almost completely abolishes the CDI of these channels. Contrasting with the clear cut function, the underlying mechanism by which ICDI abolishes CDI remains controversial. It was suggested that ICDI displaces the Ca2+ sensor calmodulin (CaM) from binding to the proximal C terminus (10), suggesting that the binding sites of CaM and ICDI are largely overlapping or allosterically coupled to each other. Alternatively, our own data rather suggested that CaM and the ICDI domain bind to different portions of the proximal C terminus (9). We proposed that the interaction between the ICDI domain and the EF-hand, a motif with a central role for transducing CDI (1116), switches off CDI without impairing binding of CaM to the channel. In this study, we designed experiments to differentiate between these two models. Here, using FRET in HEK293 cells, we provide evidence that in living cells, CaM is bound to the full-length C terminus of Cav1.4 (i.e. in the presence of ICDI). Furthermore, our data suggest that the steric orientation of the CaM/Cav channel complex differs between Cav1.2 and Cav1.4 channels. We show that CaM preassociation with Cav1.4 controls current density and also affects VDI. Thus, although CaM does not trigger CDI in Cav1.4 as it does in other HVA Ca2+ channels, it is still an important regulator of this channel.  相似文献   
3.
Immune responses of individuals infected with filarial nematodes are characterized by a marked cellular hyporesponsiveness and a shift of the cytokine balance toward a Th2/Th3 response. This modulation of cellular immune responses is considered as an important mechanism to avoid inflammatory immune responses that could eliminate the parasites. We investigated the immunomodulatory potential of a secreted cysteine protease inhibitor (onchocystatin) of the human pathogenic filaria Onchocerca volvulus. Recombinant onchocystatin (rOv17), a biologically active cysteine protease inhibitor that inhibited among others the human cysteine proteases cathepsins L and S, suppressed the polyclonally stimulated and the Ag-driven proliferation of human PBMC. Stimulated as well as unstimulated PBMC in the presence of rOv17 produced significantly more IL-10, which was paralleled in some situations by a decrease of IL-12p40 and preceded by an increase of TNF-alpha. At the same time, rOv17 reduced the expression of HLA-DR proteins and of the costimulatory molecule CD86 on human monocytes. Neutralization of IL-10 by specific Abs restored the expression of HLA-DR and CD86, whereas the proliferative block remained unaffected. Depletion of monocytes from the PBMC reversed the rOv17-induced cellular hyporeactivity, indicating monocytes to be the target cells of immunomodulation. Therefore, onchocystatin has the potential to contribute to a state of cellular hyporesponsiveness and is a possible pathogenicity factor essential for the persistence of O. volvulus within its human host.  相似文献   
4.
    
Microarray-based sandwich immunoassays can simultaneously detect dozens of proteins. However, their use in quantifying large numbers of proteins is hampered by cross-reactivity and incompatibilities caused by the immunoassays themselves. Sequential multiplex analyte capturing addresses these problems by repeatedly probing the same sample with different sets of antibody-coated, magnetic suspension bead arrays. As a miniaturized immunoassay format, suspension bead array-based assays fulfill the criteria of the ambient analyte theory, and our experiments reveal that the analyte concentrations are not significantly changed. The value of sequential multiplex analyte capturing was demonstrated by probing tumor cell line lysates for the abundance of seven different receptor tyrosine kinases and their degree of phosphorylation and by measuring the complex phosphorylation pattern of the epidermal growth factor receptor in the same sample from the same cavity.Phosphorylation of proteins is an integral part of the signal transduction of eukaryotic cells as it modulates the activity of complex protein networks. Although Western blot- and immunoprecipitation-based MS approaches (1, 2) can lead to detailed insights into these processes, most of the integrated approaches only allow a static view of protein phosphorylation because they are not suitable for the screening of hundreds of samples. Either planar or bead array-based sandwich immunoassays can be used to analyze the quantity and activation state of signaling molecules in multiplex, enabling the systematic profiling of protein abundance and post-translational modifications (36) in hundreds of samples. However, multiplex immunoassays are only suitable for the simultaneous analysis of a limited number of proteins. The detection of comprehensive phosphorylation patterns is difficult as this involves assay systems that are incompatible with multiplexing.In principle, two sandwich immunoassay setups are possible for probing the phosphorylation state of a protein. The first setup applies a capture antibody specific for a non-modified part of the protein and uses a phosphorylation state-specific detection antibody. When applied to an array-based format, however, this setup does not allow for the simultaneous measurement of the abundance and the degree of phosphorylation (3, 4). A mixture of detection antibodies, one specific for the phosphorylation site and one specific for the non-modified site of the protein, would bind simultaneously to the two different epitopes, and assay signals could not be further deconvoluted by the spatial or color code of the array. The second sandwich immunoassay setup for the analysis of protein phosphorylation applies a phosphorylation state-specific capture antibody and a protein-specific detection antibody. In such a setup, an anti-phosphotyrosine antibody (e.g. mAb 4G10) cannot be applied as a capture antibody because a huge variety of tyrosine phosphorylated proteins would be captured, and specific signals could rarely be deconvoluted. Using capture antibodies that bind to phosphorylated epitopes in the context of their flanking amino acids is not a problem until a multiplex readout is desired. If one antibody specific for the phosphosite and one antibody specific for the abundance of a protein are used together in a multiplex assay panel they might compete for their analyte. The situation becomes even more complex if the protein of interest contains various phosphorylation sites such as e.g. the epidermal growth factor receptor. Several capture antibodies target different epitopes of the same protein and therefore compete for the overall amount of targeted protein in the sample, thus making a valid simultaneous measurement problematic.Although different ways of tackling the problem of assay multiplexing are in use, we demonstrated the feasibility to sequentially perform such incompatible assays from the same sample using a magnetic particle handler that moves particles through the samples and reagents (Fig. 1). Using a model assay, we confirmed that suspension bead array-based immunoassays work under ambient analyte conditions. As described by Roger Ekins (7), decreasing of the amount of capture antibody in a sandwich immunoassay setup from a macrospot (e.g. a microtiter plate assay) to a microspot generates a scenario where only a tiny fraction of the present target analytes is captured on the microspot. Therefore, the overall concentration of the analyte molecules in the sample does not change significantly even in the case of low target concentrations and high affinity binding reactions. Furthermore, as the initial concentration of the analyte is not significantly changed when performing a miniaturized sandwich immunoassay, multiple post-translational modifications within the same protein can be measured either in sequence or in parallel in the same multiplex panel.Open in a separate windowFig. 1.Sequential multiplex analyte capturing. Magnetic suspension bead array assays can be performed sequentially, reusing the same sample material (indicated by the blue arrow). The use of a magnetic particle handler enables the quantitative transfer (black arrow) of the magnetic beads from the sample well into the wells containing washing solutions or other assay reagents. Magnetic beads from the first bead array panel are incubated with the samples to capture their respective analyte. Then the magnetic beads are subjected to washing and detection steps and are finally transferred into the readout plate (first row). After retracting the magnetic suspension bead array of the first assay panel from the sample, a bead array from the second assay panel is added and processed as described above but using different detection antibodies (second row). A third bead array assay panel can be applied after removing the second panel (third row) and so on.By probing tumor cell lines for the abundance of seven different receptor tyrosine kinases and their generic tyrosine phosphorylation, we generated complex phosphorylation patterns and thereby demonstrated the potential of this approach. More importantly, demonstrating ambient analyte conditions allowed the parallel detection of phosphorylation at different sites of the EGFR1 using phosphorylation site-specific antibodies as capture molecules with one assay panel. Phosphorylation of eight different sites and the abundance of the EGFR could be quantified relative to one another without any interference of the different immunoassays during multiplexing because competition for the analyte can be prevented by running the assays under ambient analyte conditions.  相似文献   
5.
Hypothesis. Bound C3 as the second signal for B-cell activation   总被引:26,自引:0,他引:26  
  相似文献   
6.
    
The BATLE LE TCA-100 tumour chemosensitivity assay has been used to evaluate chemotherapeutic drug sensitivity of cultured tumour cell lines. Studies were performed using test drug concentrations calibrated to discriminate sensitivity and resistance of clinical specimens. Strong sensitivity which appeared to be inconsistent with clinical experience was detected for some drugs and cell lines. Findings of strong sensitivity were consistent with basic differences between sensitivity testing cultured cell lines and clinical specimens. Results with cell lines frequently may not apply directly to clinical applications. Characterization of differences between cell lines and clinical specimens may assist in application of cell line findings to clinical trials.  相似文献   
7.
Aromatase (P450 arom) is a target of pharmacological interest for the treatment of breast cancer. New series of 7-(alpha-azolylbenzyl)-1H-indoles and indolines were synthesized as non-steroidal inhibitors of P450 arom. Selectivity was studied towards P450 17alpha enzyme. The most active compound, 1-ethyl-7-[(imidazol-1-yl)(4-chlorophenyl)methyl]-1H-indole 12c exhibited promising relative potency (rp) of 336 (rp of aminoglutethimide=1) and most of the described azoles were active and selective towards P450 arom.  相似文献   
8.
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors.This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst1-sst5), one of which is represented by two splice variants (sst2A and sst2B). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst2 and sst5 receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.  相似文献   
9.
    
Prokaryotic cells display a striking subcellular organization. Studies of the underlying mechanisms in different species have greatly enhanced our understanding of the morphological and physiological adaptation of bacteria to different environmental niches. The image analysis software tool BacStalk is designed to extract comprehensive quantitative information from the images of morphologically complex bacteria with stalks, flagella, or other appendages. The resulting data can be visualized in interactive demographs, kymographs, cell lineage plots, and scatter plots to enable fast and thorough data analysis and representation. Notably, BacStalk can generate demographs and kymographs that display fluorescence signals within the two-dimensional cellular outlines, to accurately represent their subcellular location. Beyond organisms with visible appendages, BacStalk is also suitable for established, non-stalked model organisms with common or uncommon cell shapes. BacStalk, therefore, contributes to the advancement of prokaryotic cell biology and physiology, as it widens the spectrum of easily accessible model organisms and enables highly intuitive and interactive data analysis and visualization.  相似文献   
10.
Ohne Zusammenfassung Mit 22 Textabbildungen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号