首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1991年   1篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
  1965年   1篇
  1952年   1篇
  1948年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
When hemolymph is taken from Ascaris lumbricoides at the time the worm is collected from pigs, it contains acetic, propionic, 2-methylbutyric, n-valeric, 2-methylvaleric, and succinic acid radicals; tiglic acid is absent.  相似文献   
2.
The protein-tyrosine kinases (PTKs) are a burgeoning family of proteins, each of which bears a conserved domain of 250 to 300 amino acids capable of phosphorylating substrate proteins on tyrosine residues. We recently exploited the existence of two highly conserved sequence elements within the catalytic domain to generate PTK-specific degenerate oligonucleotide primers (A. F. Wilks, Proc. Natl. Acad. Sci. USA 86:1603-1607, 1989). By application of the polymerase chain reaction, portions of the catalytic domains of several novel PTKs were amplified. We describe here the primary sequence of one of these new PTKs, JAK1 (from Janus kinase), a member of a new class of PTK characterized by the presence of a second phosphotransferase-related domain immediately N terminal to the PTK domain. The second phosphotransferase domain bears all the hallmarks of a protein kinase, although its structure differs significantly from that of the PTK and threonine/serine kinase family members. A second member of this family (JAK2) has been partially characterized and exhibits a similar array of kinase-related domains. JAK1 is a large, widely expressed membrane-associated phosphoprotein of approximately 130,000 Da. The PTK activity of JAK1 has been located in the C-terminal PTK-like domain. The role of the second kinaselike domain is unknown.  相似文献   
3.
4.

Cryopreservation is a valuable tool that could potentially create an alternate plant preservation strategy for species at risk such as Hill’s thistle. The present study is focused on a successful paradigm involving conservation, propagation and redistribution (CPR), emaphasizing the usefulness of cryopreservation techniques for plant conservation using Hill’s thistle (Cirsium hillii. (Canby) Fernald). A cryopreservation protocol was established using the droplet-vitrification method for 5-week-old shoot tips of in vitro grown cultures. More than 90% of shoot tips showed regrowth and nearly all regenerated plants were able to survive in the greenhouse. The survival, growth, and development of plants from cryopreserved shoot buds and their performance in field conditions were all comparable or better than the plants from non-cryopreserved buds. Reintroduced plants flowered following overwintering and the magnitude of flowering was site dependent with ca. 80% flowering observed in one site. The site dependent flowering patterns were assessed using phytohormone profiling and compared to herbivory, a common biotic stressor of these plants. Lower tryptophan concentrations led to higher flowering except in alvars, where the limestone resisted root penetration resulting in poor flowering. The presence of tryptamine in the greenhouse acclimatized or alvar field leaves suggested the preparedness of the plants for herbivory/grazing. Serotonin and melatonin concentrations were lower in flowering plants and in sites where the biotic/abiotic stress was minimal. This study provides evidence of the effectiveness of the CPR model in species recovery programs for endangered species. Physiological characterization of plants developed from cryopreserved tissues can be useful for fundamental and applied research in stress adaptation and reproductive biology of plants.

  相似文献   
5.
Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous. This asexual population arose from a single worker ancestor approximately 20 years ago and has persisted for at least 100 generations. Thelytokous parthenogenesis results in a 1/3 of loss of heterozygosity with each generation. Yet, this population retains heterozygosity throughout its genome due to selection against homozygotes. Deep sequencing of one bee from each of the three known sub‐lineages of the population revealed that 3,766 of 10,884 genes (34%) have retained heterozygosity across all sub‐lineages, suggesting that these genes have heterozygote advantage. The maintenance of heterozygosity in the same genes and genomic regions in all three sub‐lineages suggests that nearly every chromosome carries genes that show sufficient heterozygote advantage to be selectively detrimental when homozygous.  相似文献   
6.
Fluorescence resonance energy transfer (FRET) detection in fusion constructs consisting of green fluorescent protein (GFP) variants linked by a sequence that changes conformation upon modification by enzymes or binding of ligands has enabled detection of physiological processes such as Ca(2+) ion release, and protease and kinase activity. Current FRET microscopy techniques are limited to the use of spectrally distinct GFPs such as blue or cyan donors in combination with green or yellow acceptors. The blue or cyan GFPs have the disadvantages of less brightness and of autofluorescence. Here a FRET imaging method is presented that circumvents the need for spectral separation of the GFPs by determination of the fluorescence lifetime of the combined donor/acceptor emission by fluorescence lifetime imaging microscopy (FLIM). This technique gives a sensitive, reproducible, and intrinsically calibrated FRET measurement that can be used with the spectrally similar and bright yellow and green fluorescent proteins (EYFP/EGFP), a pair previously unusable for FRET applications. We demonstrate the benefits of this approach in the analysis of single-cell signaling by monitoring caspase activity in individual cells during apoptosis.  相似文献   
7.
The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75–95%). The Africanized honeybee is a New World hybrid of A. m. scutellata from Africa and European subspecies, with the African component making up 50–90% of the genome. Africanized honeybees are considered undesirable for bee‐keeping in most countries, due to their extreme defensiveness and poor honey production. The international trade in honeybees is restricted, due in part to bans on the importation of queens (and semen) from countries where Africanized honeybees are extant. Some desirable strains from the United States of America that have been bred for traits such as resistance to the mite Varroa destructor are unfortunately excluded from export to countries such as Australia due to the presence of Africanized honeybees in the USA. This study shows that a panel of 95 single nucleotide polymorphisms, chosen to differentiate between the African, Eastern European and Western European lineages, can detect Africanized honeybees with a high degree of confidence via ancestry assignment. Our panel therefore offers a valuable tool to mitigate the risks of spreading Africanized honeybees across the globe and may enable the resumption of queen and bee semen imports from the Americas.  相似文献   
8.
9.
10.
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号