首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   6篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2009年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   4篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1934年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.

Background  

Populations of the Oriental White-backed Vulture (Gyps bengalensis) have declined by over 95% within the past decade. This decline is largely due to incidental consumption of the non-steroidal anti-inflammatory veterinary pharmaceutical diclofenac, commonly used to treat domestic livestock. The conservation status of other Gyps vultures in southern Asia is also of immediate concern, given the lack of knowledge regarding status of their populations and the continuing existence of taxonomic uncertainties. In this study, we assess phylogenetic relationships for all recognized species and the majority of subspecies within the genus Gyps. The continuing veterinary use of diclofenac is an unknown but potential risk to related species with similar feeding habits to Gyps bengalensis. Therefore, an accurate assessment of the phylogenetic relationships among Gyps vultures should aid in their conservation by clarifying taxonomic uncertainties, and enabling inference of their respective relatedness to susceptible G. bengalensis.  相似文献   
2.
3.
4.
alpha 1-Proteinase inhibitor (alpha 1-PI), a member of the serine proteinase inhibitor superfamily, has a primary role in controlling neutrophil elastase activity within the mammalian circulation. Several studies have indicated that the reactive center region of alpha 1-PI, the amino acid sequence of which is critical to recognition of and binding to target proteinases, is highly divergent within and among species. This appears to be a consequence of accelerated rates of evolution that may have been driven by positive Darwinian selection. In order to examine this and other features of alpha 1-PI evolution in more detail, we have isolated and sequenced cDNAs representing alpha 1- PI mRNAs of the mouse species Mus saxicola and Mus minutoides and have compared these with a number of other mammalian alpha 1-PI mRNAs. Relative to other mammalian mRNAs, the extent of nonsynonymous substitution is generally high throughout the alpha 1-PI mRNA molecule, indicating greater overall rates of amino acid substitution. Within and among mouse species, the 5'-half of the mRNA, but not the 3'-half, has been homogenized by concerted evolution. Finally, the reactive center is under diversifying or positive Darwinian selection in murid rodents (rats, mice) and guinea pigs yet is under purifying selection in primates and artiodactyls. The significance of these findings to alpha 1-PI function and the possible selective forces driving evolution of serpins in general are discussed.   相似文献   
5.
Patterns of mitochondrial DNA (mtDNA) variation were examined in 133 mole-rats constituting all four chromosomal species (2n = 52, 2n = 54, 2n = 58, and 2n = 60) of the Spalax ehrenbergi superspecies in Israel, as well as the peripheral isolates of 2n = 60. In the main range of the complex, a total of 28 mtDNA haplotypes were found in 64 mole-rats, with most haplotypes being unique to either a single chromosomal species or population. mtDNA divergence increased from low to high diploid number in a north-to-south direction in Israel. Overall levels of mtDNA diversity were unexpectedly the highest in the 2n = 60, the youngest species of the complex. The mtDNA haplotypes can be separated into two major groups, 2n = 52-54 and 2n = 58-60, and a phylogenetic analysis for each group revealed evidence of a few haplotypes not sorted by diploid number. The overall patterns of mtDNA divergence seen within and among the four chromosomal species are consistent with the parapatric mode of speciation as suggested from previous studies of allozyme and DNA hybridization. In a separate data set the patterns of mtDNA variation were examined across the main geographic range and across peripheral semi-isolates and isolates of the 2n = 60 chromosomal species. Fifteen haplotypes were found in 69 mole-rats. High levels of mtDNA diversity characterized the main range, semi-isolated, and even some desert isolated populations. The peripheral isolates contain much mtDNA diversity, including novel haplotypes.   相似文献   
6.
Because little is known about the interactions between herbal products and standard medications, the effects of seven ginsenosides and two eleutherosides (active components of the ginseng root) on the catalytic activity of c-DNA expressed cytochrome P450 isoforms were studied in in vitro experiments. Increasing concentrations of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, and Rg1 and eleutherosides B and E were incubated with a panel of recombinant human CYP isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) and their effects on the conversion of specific surrogate substrates measured fluorometrically in a 96-well plate format. For each test substance, the IC50 (the concentration required to inhibit the metabolism of the surrogate substrates by 50%) was estimated and this value compared with that obtained for positive control inhibitory drugs furafylline, sulfaphenazole, tryanylcypromine, quinidine, and ketoconizole. Of the components tested, three ginsenosides (Rd, Rc, and Rf) modified the activity of the recombinant enzymes. Ginsenoside Rd produced weak inhibitory activity against the surrogate substrates for CYP3A4 and CYP2D6 and even weaker inhibitory activity against the surrogate substrates for CYP2C19 and CYP2C9. The IC50 values of 58 and 74 uM for the two substrates for CYP3A4 are orders of magnitude higher than that for the potent inhibitor ketoconazole used as a positive control. Ginsenoside Rc produced an increase in the activity of CYP2C9 (70% at 200 uM) and ginsenoside Rf produced an increase in the activity of CYP3A4 (54% at 200 uM). The biological significance of this is unclear at this time. Enzyme "activation", the process by which direct addition of one compound to an enzyme enhances the rate of reaction of the substrate, has been observed in a number of cases with P450 enzymes; however, a matrix effect caused by the test compound fluorescing at the same wavelength as the metabolite of the marker substrate cannot be ruled out. In summary, these studies suggest that the ginsenosides and eleutherosides tested are not likely to inhibit the metabolism of coadministered medications in which the primary route of elimination is via cytochrome P450; the potential of ginsenosides to enhance the catalysis of certain substrates requires further investigation.  相似文献   
7.
Arginine decarboxylase (ADC) is an important enzyme in the production of putrescine and polyamines in plants. It is encoded by a single or low-copy nuclear gene that lacks introns in sequences studied to date. The rate of Adc amino acid sequence evolution is similar to that of ndhF for the angiosperm family studied. Highly conserved regions provide several target sites for PCR priming and sequencing and aid in nucleotide and amino acid sequence alignment across a range of taxonomic levels, while a variable region provides an increased number of potentially informative characters relative to ndhF for the taxa surveyed. The utility of the Adc gene in plant molecular systematic studies is demonstrated by analysis of its partial nucleotide sequences obtained from 13 representatives of Brassicaceae and 3 outgroup taxa, 2 from the mustard oil clade (order Capparales) and 1 from the related order Malvales. Two copies of the Adc gene, Adc1 and Adc2, are found in all members of the Brassicaceae studied to data except the basal genus Aethionema. The resulting Adc gene tree provides robust phylogenetic data regarding relationships within the complex mustard family, as well as independent support for proposed tribal realignments based on other molecular data sets such as those from chloroplast DNA.   相似文献   
8.
The main methods for producing genetically engineered cells use viral vectors for which safety issues and manufacturing costs remain a concern. In addition, selection of desired cells typically relies on the use of cytotoxic drugs with long culture times. Here, we introduce an efficient non-viral approach combining the Sleeping Beauty (SB) Transposon System with selective proliferation of engineered cells by chemically induced dimerization (CID) of growth factor receptors. Minicircles carrying a SB transposon cassette containing a reporter transgene and a gene for the F36VFGFR1 fusion protein were delivered to the hematopoietic cell line Ba/F3. Stably-transduced Ba/F3 cell populations with >98% purity were obtained within 1 week using this positive selection strategy. Copy number analysis by quantitative PCR (qPCR) revealed that CID-selected cells contain on average higher copy numbers of transgenes than flow cytometry-selected cells, demonstrating selective advantage for cells with multiple transposon insertions. A diverse population of cells is present both before and after culture in CID media, although site-specific qPCR of transposon junctions show that population diversity is significantly reduced after selection due to preferential expansion of clones with multiple integration events. This non-viral, positive selection approach is an attractive alternative for producing engineered cells.  相似文献   
9.
Summary A procedure is described for large-scale isolation of micromeres from 16-cell stage sea urchin embryos. One to two grams of >99% pure, viable micromeres (2.3 to 4.6 × 108 cells) are routinely isolated in a single preparation. In culture, these cells uniformly proceed through their normal development, in synchrony with micromeres in whole embryos, ultimately differentiating typical larval skeletal structures. The attributes of this procedure are: (a) the very early time of isolation of the cells, directly after the division that establishes the cell line; (b) the large yield of cells; (c) the purity of the preparation of cell; and (d) their synchronous development in culture through skeletogenesis. The procedure greatly aids in making sea urchin micromeres a favorable material for molecular analysis of development. This work was supported in part by the following grants from the National Institutes of Health: Grant HL-10312 to A.H.W., Grant GM-20784 to Helen R. Whiteley, Grant ES-02190 to N. Karle Mottet, M.D., and Training Grants ES-07032 and HD-00266.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号