首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.

Background

Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied.

Methods

We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry.

Results

Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations.

Conclusions

PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.  相似文献   
2.
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.  相似文献   
3.
The proopiomelanocortin (POMC)-derived neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) is known to modulate some aspects of inflammation through direct effects on T cells, B cells, and monocytes. To determine whether alpha-MSH might similarly influence mast cell responsiveness, mast cells were examined to see if they expressed the receptor for alpha-MSH, melanocortin-1 (MC-1), and whether alpha-MSH altered mast cell function. We thus first identified MC-1 on bone marrow cultured murine mast cells (BMCMC) and a murine mast cell line (MCP-5) employing flow cytometry and through detection of specific binding. Subsequent treatment of mast cells with alpha-MSH increased the cAMP concentration in a characteristic biphasic pattern, demonstrating that alpha-MSH could affect intracellular processes. We next examined the effect of alpha-MSH on mediator release and cytokine expression. IgE/DNP-human serum albumin-stimulated histamine release from mast cells was inhibited by approximately 60% in the presence of alpha-MSH. Although activation of BMCMC induced the expression of mRNAs for the inflammatory cytokines IL-1beta, IL-4, IL-6, TNF-alpha, and the chemokine lymphotactin, mRNAs for IL-1beta, TNF-alpha, and lymphotactin were down-modulated in the presence of alpha-MSH. Finally, IL-3-dependent proliferative activity of BMCMC was slightly but significantly augmented by alpha-MSH. Taken together, these observations suggest that alpha-MSH may exert an inhibitory effect on the mast cell-dependent component of a specific inflammatory response.  相似文献   
4.
The reason why particular inhaled Ags induce allergic sensitization while others lead to immune tolerance is unclear. Along with a genetic predisposition to atopy, intrinsic characteristics of these Ags must be important. A common characteristic of many allergens is that they either possess proteinase activity or are inhaled in particles rich in proteinases. Many allergens, such as house dust mite and cockroach allergens, have the potential to activate the proteinase-activated receptor (PAR)-2. In this study, we report that PAR-2 activation in the airways at the same time as exposure to inhaled Ags induces allergic sensitization, whereas exposure to Ag alone induces tolerance. BALB/c mice were administered OVA with a PAR-2 activating peptide intranasally. Upon allergen re-exposure mice developed airway inflammation and airway hyperresponsiveness, as well as OVA-specific T cells with a Th2 cytokine profile when restimulated with OVA in vitro. Conversely, mice given OVA alone or OVA with a PAR-2 control peptide developed tolerance. These tolerant mice did not develop airway inflammation or airway hyperresponsiveness, and developed OVA-specific T cells that secreted high levels of IL-10 when restimulated with OVA in vitro. Furthermore, pulmonary dendritic cell trafficking was altered in mice following intranasal PAR-2 activation. Finally, we showed that PAR-2-mediated allergic sensitization was TNF-dependent. Thus, PAR-2 activation in the airways could be a critical factor in the development of allergic sensitization following mucosal exposure to allergens with serine proteinase activity. Interfering with this pathway may prove to be useful for the prevention or treatment of allergic diseases.  相似文献   
5.
Mast cells adhere to fibroblasts, but the biological effects of adhesion are not well understood. We hypothesized that these adhesive interactions are important for tissue remodeling through the release of matrix metalloproteinases (MMP). Murine bone marrow cultured mast cells (BMCMC) were cocultured with NIH-3T3 fibroblasts or murine lung fibroblasts (CCL-206) and supernatants analyzed for MMP-9 release by gelatin zymography. Coculture of BMCMC for 24 h with NIH-3T3 or CCL-206 fibroblasts increased the release of MMP-9 from fibroblasts by 1.7+/-0.2 and 2.0+/-0.7-fold, respectively. Coculture of BMCMC and fibroblasts in the presence of IgE increased further MMP-9 release, which was released by fibroblasts. MMP-9 release was dependent on TNF released from IgE activated BMCMC and on adhesive interactions between BMCMC and fibroblasts. Increased MMP-9 release was also p44/42-dependent, as was MMP-9 up-regulation during coculture of fibroblasts with resting BMCMC. Finally, IgE injection into the mouse ear increased MMP-9 content of the ear tissue in the absence of Ag, indicating that IgE-mediated remodeling may play a pathogenic role in allergic conditions even in the absence of exposure to allergens. In conclusion, mast cell-fibroblast interactions induce the release of proteases important for tissue remodeling, such as MMP-9. MMP-9 release was further increased in the presence of IgE during coculture, suggesting a role for mast cell-fibroblast interactions in atopic conditions.  相似文献   
6.
Thrombin activates mast cells to release inflammatory mediators through a mechanism involving protease-activated receptor-1 (PAR-1). We hypothesized that PAR-1 activation would induce mast cell adhesion to fibronectin (FN). Fluorescent adhesion assay was performed in 96-well plates coated with FN (20 microg/ml). Murine bone marrow cultured mast cells (BMCMC) were used after 3-5 wk of culture (>98% mast cells by flow cytometry for c-Kit expression). Thrombin induced beta-hexosaminidase, IL-6, and matrix metalloproteinase-9 release from BMCMC. Thrombin and the PAR-1-activating peptide AparafluoroFRCyclohexylACitY-NH(2) (cit) induced BMCMC adhesion to FN in a dose-dependent fashion, while the PAR-1-inactive peptide FSLLRY-NH(2) had no effect. Thrombin and cit induced also BMCMC adhesion to laminin. Thrombin-mediated adhesion to FN was inhibited by anti-alpha(5) integrin Ab (51.1 +/- 6.7%; n = 5). The combination of anti-alpha(5) and anti-alpha(4) Abs induced higher inhibition (65.7 +/- 7.1%; n = 5). Unlike what is known for FcepsilonRI-mediated adhesion, PAR-1-mediated adhesion to FN did not increase mediator release. We then explored the signaling pathways involved in PAR-1-mediated mast cell adhesion. Thrombin and cit induced p44/42 and p38 phosphorylation. Pertussis toxin inhibited PAR-1-mediated BMCMC adhesion by 57.3 +/- 7.3% (n = 4), indicating that G(i) proteins are involved. Wortmannin and calphostin almost completely inhibited PAR-1-mediated mast cell adhesion, indicating that PI-3 kinase and protein kinase C are involved. Adhesion was partially inhibited by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (24.5 +/- 3.3%; n = 3) and the p38 inhibitor SB203580 (25.1 +/- 10.4%; n = 3). The two inhibitors had additive effects. Therefore, thrombin mediates mast cell adhesion through the activation of G(i) proteins, phosphoinositol 3-kinase, protein kinase C, and mitogen-activated protein kinase pathways.  相似文献   
7.
Mast cells (MC) are major effector cells of IgE-mediated allergic inflammation. However, it has become increasingly clear that they also play important roles in a diversity of physiological and pathological processes. Recent advances have focused on the importance of MC in both innate and adaptive immune responses and have fostered studies of MC beyond the myopic focus on allergic reactions. MC possess a great variety of surface receptors and may be activated by inflammatory mediators, immunoglobulins, proteases, hormones, neuropeptides and bacterial products. Following activation they produce a plethora of pro-inflammatory mediators and may participate in inflammatory reactions in many organs. This review focuses on the role of MC in inflammatory reactions in mucosal surfaces with particular emphasis on their role in asthma and gastrointestinal inflammatory conditions.  相似文献   
8.

Background

Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis.

Methods

To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2 -/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content.

Results

BLM-treated rac2 -/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2 -/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2 -/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2 -/- and WT and mice that survived to day 21.

Conclusion

Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号