首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
  20篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2013年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  1998年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
Evolution and population genetic structure of marine species across the Caribbean Sea are shaped by two complex factors: the geological history and the present pattern of marine currents. Characterizing and comparing the genetic structures of codistributed species, such as host–parasite associations, allow discriminating the relative importance of environmental factors and life history traits that influenced gene flow and demographic events. Using microsatellite and Cytochrome Oxidase I markers, we investigated if a host–parasite pair (the heart urchin Meoma ventricosa and its parasitic pea crab Dissodactylus primitivus) exhibits comparable population genetic structures in the Caribbean Sea and how the observed patterns match connectivity regions from predictive models and other taxa. Highly contrasting patterns were found: the host showed genetic homogeneity across the whole studied area, whereas the parasite displayed significant differentiation at regional and local scales. The genetic diversity of the parasitic crabs (both in microsatellites and COI) was distributed in two main groups, Panama–Jamaica–St Croix on the one hand, and the South‐Eastern Caribbean on the other. At a smaller geographical scale, Panamanian and Jamaican parasite populations were genetically more similar, while more genetic differentiation was found within the Lesser Antilles. Both species showed a signature of population expansion during the Quaternary. Some results match predictive models or data from previous studies (e.g., the Western‐Eastern dichotomy in the parasite) while others do not (e.g., genetic differentiation within the Lesser Antilles). The sharp dissimilarity of genetic structure of these codistributed species outlines the importance of population expansion events and/or contrasted patterns of gene flow. This might be linked to differences in several life history traits such as fecundity (higher for the host), swimming capacity of larval stages (higher for the parasite), and habitat availability (higher for the host).  相似文献   
2.
A phylogeny for 21 species of spatangoid sea urchins is constructed using data from three genes and results compared with morphology-based phylogenies derived for the same taxa and for a much larger sample of 88 Recent and fossil taxa. Different data sets and methods of analysis generate different phylogenetic hypotheses, although congruence tests show that all molecular approaches produce trees that are congruent with each other. By contrast, the trees generated from morphological data differ significantly according to taxon sampling density and only those with dense sampling (after a posteriori weighting) are congruent with molecular estimates. With limited taxon sampling, secondary reversals in deep-water taxa are interpreted as plesiomorphies, pulling them to a basal position. The addition of fossil taxa with their unique character combinations reveals hidden homoplasy and generates a phylogeny that is compatible with molecular estimates. As homoplasy levels were found to be broadly similar across different anatomical structures in the echinoid test, no one suite of morphological characters can be considered to provide more reliable phylogenetic information. Some traditional groupings are supported, including the grouping of Loveniidae, Brissidae and Spatangidae within the Micrasterina, but the Asterostomatidae is shown to be polyphyletic with members scattered amongst at least five different clades. As these are mostly deep-sea taxa, this finding implies multiple independent invasions into the deep sea.  相似文献   
3.
Evaluating the potential climatic suitability for premium wine production is crucial for adaptation planning in Europe. While new wine regions may emerge out of the traditional boundaries, most of the present-day renowned winemaking regions may be threatened by climate change. Here, we analyse the future evolution of the geography of wine production over Europe, through the definition of a novel climatic suitability indicator, which is calculated over the projected grapevine phenological phases to account for their possible contractions under global warming. Our approach consists in coupling six different de-biased downscaled climate projections under two different scenarios of global warming with four phenological models for different grapevine varieties. The resulting suitability indicator is based on fuzzy logic and is calculated over three main components measuring (i) the timing of the fruit physiological maturity, (ii) the risk of water stress and (iii) the risk of pests and diseases. The results demonstrate that the level of global warming largely determines the distribution of future wine regions. For a global temperature increase limited to 2°C above the pre-industrial level, the suitable areas over the traditional regions are reduced by about 4%/°C rise, while for higher levels of global warming, the rate of this loss increases up to 17%/°C. This is compensated by a gradual emergence of new wine regions out of the traditional boundaries. Moreover, we show that reallocating better-suited grapevine varieties to warmer conditions may be a viable adaptation measure to cope with the projected suitability loss over the traditional regions. However, the effectiveness of this strategy appears to decrease as the level of global warming increases. Overall, these findings suggest the existence of a safe limit below 2°C of global warming for the European winemaking sector, while adaptation might become far more challenging beyond this threshold.  相似文献   
4.
5.
Selective feeding by zooplankton can have profound consequencesfor the stability of grazer and prey populations, as demonstratedby the behavior of plankton dynamics models. We present an analyticalapproach—calculation of prey ratio trajectories—thatreveals unambiguously whether selective feeding behavior isstabilizing (i.e. provides a refuge for preferred prey speciesat low prey concentrations) or destabilizing (i.e. results inelimination of prey populations). Prey ratio trajectories werecalculated for three modeled selective feeding behaviors. Constantselection was consistently destabilizing, while selection behaviorsthat changed inresponse to either prey ratio or prey abundancecould be stabilizing. Batch culture experiments with four protozoangrazer species (three ciliates, one heterotrophic dinoftagellate)demonstrated that protozoa fed selectively in every case, weaklypreferring the larger of the two algal species offered. Stabilizingselection was observed only in the experiment with Favella sp.,however, meaning that only this species altered its selectionbehavior in response to changing experimental conditions. Becauseprotozoa are the major grazers of phytoplankton in many planktonicsystems, our findings indicate that the use of selective feedingbehaviors to stabilize plankton dynamics models needs carefulevaluation. The modeling and graphical techniques presentedhereare a tool for linking further exploration of selective feedingbehaviors with the development of planktondynamics models.  相似文献   
6.
Surveys of larval diversity consistently increase biodiversity estimates when applied to poorly documented groups of marine invertebrates such as phoronids and hemichordates. However, it remains to be seen how helpful this approach is for detecting unsampled species in well‐studied groups. Echinoids represent a large, robust, well‐studied macrofauna, with low diversity and low incidence of cryptic species, making them an ideal test case for the efficacy of larval barcoding to discover diversity in such groups. We developed a reference dataset of DNA barcodes for the shallow‐water adult echinoids from both coasts of Panama and compared them to DNA sequences obtained from larvae collected primarily on the Caribbean coast of Panama. We sequenced mitochondrial cytochrome c oxidase subunit I (COI) for 43 species of adult sea urchins to expand the number and coverage of sequences available in GenBank. Sequences were successfully obtained for COI and 16S ribosomal DNA from 272 larvae and assigned to 17 operational taxonomic units (OTUs): 4 from the Pacific coast of Panama, where larvae were not sampled as intensively, and 13 from the Caribbean coast. Of these 17 OTUs, 13 were identified from comparisons with our adult sequences and belonged to species well documented in these regions. Another larva was identified from comparisons with unpublished sequences in the Barcode of Life Database (BOLD) as belonging to Pseudoboletia, a genus scarcely known in the Caribbean and previously unreported in Panama. Three OTUs remained unidentified. Based on larval morphology, at least two of these OTUs appeared to be spatangoids, which are difficult to collect and whose presence often goes undetected in standard surveys of benthic diversity. Despite its ability to capture unanticipated diversity, larval sampling failed to collect some species that are locally common along the Caribbean coast of Panama, such as Leodia sexiesperforata, Diadema antillarum, and Clypeaster rosaceus.  相似文献   
7.
The evolution of marine neotropical shallow water species is expected to have been greatly affected by physical events related to the emergence of the Central American Isthmus. The anomuran crab Megalobrachium, a strictly neotropical porcellanid genus, consists of four species in the West Atlantic (WA) and nine in the East Pacific (EP). Dispersal is limited to a relatively short planktonic phase, which lasts approximately two weeks. We obtained DNA sequences of three mitochondrial and two nuclear genes of all but one species of Megalobrachium to construct a time‐calibrated phylogeny of the genus and its historical phylogeography, based on the reconstruction of ancestral areas. The topology of the phylogenetic trees of Megalobrachium produced by Bayesian Inference (BI) and Maximum Likelihood (ML) were virtually congruent. The genus is monophyletic with respect to other porcellanids. Ancestral area reconstruction indicates that it arose in the eastern Pacific 18 million years ago and diversified into at least 13 species that are currently formally recognized and three additional species indicated by our data. Most morphological variation appears to have followed phylogenetic differentiation, though some cryptic speciation has also occurred. Four geminate clades in this genus implicate the gradual emergence of the Central American Isthmus in this diversification, but events preceding the final separation of the oceans as well as within‐ocean events after the cessation of water connections were also important.  相似文献   
8.
9.
Research on speciation of marine organisms has lagged behind that of terrestrial ones, but the study of the evolution of molecules involved in the adhesion of gametes in free-spawning invertebrates is an exception. Here I review the function, species-specificity, and molecular variation of loci coding for bindin in sea urchins, lysin in abalone and their egg receptors, in an effort to assess the degree to which they contribute to the emergence of reproductive isolation during the speciation process. Bindin is a protein that mediates binding of the sperm to the vitelline envelope (VE) of the egg and the fusion of the gametes' membranes, whereas lysin is a protein involved only in binding to the VE. Both of these molecules are important in species recognition by the gametes, but they rarely constitute absolute blocks to interspecific hybridization. Intraspecific polymorphism is high in bindin, but low in lysin. Polymorphism in bindin is maintained by frequency-dependent selection due to sexual conflict arising from the danger of polyspermy under high densities of sperm. Monomorphism in lysin is the result of purifying selection arising from the need for species recognition. Interspecific divergence in lysin is due to strong positive selection, and the same is true for bindin of four out of seven genera of sea urchins studied to date. The differences between the sea urchin genera in the strength of selection can only partially be explained by the hypothesis of reinforcement. The egg receptor for lysin (VERL) is a glycoprotein with 22 repeats, 20 of which have evolved neutrally and homogenized by concerted evolution, whereas the first two repeats are under positive selection. Selection on lysin has been generated by the need to track changes in VERL, permitted by the redundant structure of this molecule. Both lysin and bindin are important in reproductive isolation, probably had a role in speciation, but it is hard to determine whether they meet the strictest criteria of "speciation loci," defined as genes whose differentiation has caused speciation.  相似文献   
10.
In the face of ever-increasing threats to coral reef ecosystems, it is essential to understand the impact of natural predators in order to devise appropriate management strategies. Destructive population explosions of the crown-of-thorns starfish Acanthaster planci have devastated coral reefs throughout the Indo-Pacific for decades. But despite extensive research, the causes of outbreaks are still unclear. An important consideration in this research is that A. planci has been regarded as a single taxonomic entity. Using molecular data from its entire distribution, we find that A. planci is in fact a species complex. This discovery has important consequences for future coral reef research, and might prove critical for successful reef conservation management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号