首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   1篇
  2021年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1989年   1篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1965年   1篇
  1954年   1篇
排序方式: 共有35条查询结果,搜索用时 46 毫秒
1.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 16 expressed sequence tags (EST)‐SSR markers from Brassica juncea and their cross‐amplification across Brassica species. Sixteen primer pairs were assessed for polymorphism in all genomes of the diploid and amphidiploid Brassica species. The markers show reliable amplification, considerable polymorphism and high transferability across species, demonstrating the utility of EST‐SSRs for genetic analysis of brassicas.  相似文献   
2.
The availability of expressed sequence data derived from gene discovery programs enables mining for simple sequence repeats (SSR), providing useful genetic markers for crop improvement. These markers are inexpensive, require minimal labour to produce and can frequently be associated with functionally annotated genes. This study presents the development and characterization of 24 expressed sequence tags (EST)‐SSR markers from Brassica napus and their cross‐amplification across Brassica species. The markers show reliable amplification, genome specificity and considerable polymorphism, demonstrating the utility of EST‐SSRs for genetic analysis of wild Brassica populations and commercial Brassica germplasm.  相似文献   
3.
4.
1. Organisms face the difficult task of selecting an optimal new nest from the available options during relocation. Studies on honeybees and ants in their natural habitat indicate that scouts encounter multiple options that vary in their physical and biotic characteristics. 2. Architectural features, location, odour, and the presence of nest mates impact their choice of nest site selection. In order to examine the influence of diverse parameters on final nest site selection we conducted choice experiments on ants in the context of relocation. 3. After controlling for any influence by physical characteristics, we found that the presence of brood, adults, and colony odour acted as attractants with more colonies relocating into these new nests than expected by chance alone. In contrast, the presence of a reproductive female, or familiarity of location had no influence on the choice. New nests containing dead ants evoked cleaning responses from scouts, which may interfere with relocation into these nests. 4. Even although colonies consist of hundreds of adults and brood, colony integrity was maintained in 98.7% of colonies. Furthermore, we found that none of the eight studied colonies relocated when faced with minor flooding in their natural habitat, indicating that the cost of relocation is non‐trivial and that this species is capable of minor damage repairs. 5. These observations highlight the complexity of relocation in general, allow the characterisation of desirable nest attributes in this species, and highlight the need for similar exploration in other social insects.  相似文献   
5.
Voltage-gated calcium channels(VGCCs) play critical roles in cardiac and skeletal muscle contractions,hormone and neurotransmitter release,as well as slower processes such as cell proliferation,differentiation,migration and death.Mutations in VGCCs lead to numerous cardiac,muscle and neurological disease,and their physiological function is tightly regulated by kinases,phosphatases,G-proteins,calmodulin and many other proteins.Fifteen years ago,RGK proteins were discovered as the most potent endogenous regulators of VGCCs.They are a family of monomeric GTPases(Rad,Rem,Rem2,and Gem/Kir),in the superfamily of Ras GTPases,and they have two known functions: regulation of cytoskeletal dynamics including dendritic arborization and inhibition of VGCCs.Here we review the mechanisms and molecular determinants of RGK-mediated VGCC inhibition,the physiological impact of this inhibition,and recent evidence linking the two known RGK functions.  相似文献   
6.
Methylenetetrahydrofolate reductase (MTHFR) is the most important gene that participates in folate metabolism. Presence of valine instead of alanine at position 677 and elevated levels of homocystein causes DNA hypomethylation which in turn favours nondisjunction. In this study, we conducted a meta-analysis to establish link between maternal single-nucleotide polymorphism (SNP) and birth of Down’s syndrome (DS) child. A total of 37 case–control studies were selected for analysis including our own, in which we investigated 110 cases and 111 control mothers. Overall, the result of meta-analysis showed significant risk of DS affected by the presence of maternal SNP (MTHFR 677 C–T OR = 0.816, 95% CI = 0.741–0.900, P<0.0001). Heterogeneity of high magnitude was observed among the studies. The chi-square value suggested a highly significant association between homozygous mutant TT genotype and birth of DS child (χ2=23.63, P=0.000). Genetic models suggested that ‘T’ allele possesses high risk for DS whether present in dominant (OR = 1.23, 95% CI = 1.13–1.34); codominant (OR = 1.17, 95% CI = 1.10–1.25) or recessive (OR = 1.21, 95% CI = 1.05–1.38) form. The analysis from all 37 studies combined together suggested that MTHFR 677 C–T is a major risk factor for DS birth.  相似文献   
7.
Skvorak et al. [1] demonstrated the therapeutic efficacy of HTx in a murine model of iMSUD, confirming significant metabolic improvement and survival. To determine the effect of HTx on extrahepatic organs, we examined the metabolic effects of HTx in brain from iMSUD animals. Amino acid analysis revealed that HTx corrected increased ornithine, partially corrected depleted glutamine, and revealed a trend toward alloisoleucine correction. For amino acid and monoamine neurotransmitters, decreased GABA was partially corrected with HTx, while the l-histidine dipeptide of GABA, homocarnosine, was decreased in iMSUD mice and hypercorrected following HTx. Elevated branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in MSUD can deplete brain tyrosine and tryptophan (the precursors of monoamine neurotransmitters, dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT)) through competition via the large neutral amino acid transporter. HTx corrected decreased DA levels and the DA metabolite, 3-methoxytyramine, and partially corrected the DA intermediate 3,4-dihydroxyphenylacetate (DOPAC) and 5-HT levels, despite normal tyrosine and tryptophan levels in iMSUD mouse brain. We further observed enhanced intracellular turnover of both DA and 5-HT in iMSUD mouse brain, both of which partially corrected with HTx. Our results suggest new pathomechanisms of neurotransmitter metabolism in this disorder and support the therapeutic relevance of HTx in iMSUD mice, while providing proof-of-principle that HTx has corrective potential in extrahepatic organs.  相似文献   
8.
A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcross-recombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distance of 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.  相似文献   
9.
Abstract. Fluoride has been shown to inhibit germination and seedling establishment in barley cv. Natasha, wheat cv. Axona and rice cv. Ishikari. The concentrations of fluoride were selected so as to give a satisfactory dose-response relationship and also to relate to levels of fluoride present under natural conditions. Concentrations used were zero, 0.5, 1.0, 10 and 40 mol m−3 sodium fluoride. In germination studies, barley was found to be least tolerant and rice most tolerant of fluoride. The inhibition was found to be a response to fluoride itself and the observed effects were not due to pH, sodium or an unspecific effect of halide ion. Phosphate, applied at two concentration levels, was unable to overcome the inhibition. Fluoride was also shown to inhibit seedling growth. The inhibitory effects of fluoride may be accounted for by a wide range of metabolic effects including inhibition of gibberellic acid–triggered alpha amylase activity during germination, and later on to inhibition of chlorophyll synthesis in the developing leaves.  相似文献   
10.
Regional activities of phosphoinositide-specific phospholipase C (PLC) were measured after lateral fluid percussion (FP) brain injury in rats. The activity of PLC on phosphatidylinositol 4,5-bisphosphate (PIP2) in the rat cortex required calcium, and at 45 M concentration it increased PLC activity by about ten-fold. The activity of PLC was significantly increased in the cytosol fraction in the injured (left) cortex (IC) at 5 min, 30 min and 120 min after brain injury. However, in the same site, increases were observed in the membrane fraction only at 5 min after brain injury. In both the contralateral (right) cortex (CC) and ipsilateral hippocampus (IH), the activity of PLC was increased in the cytosol only at 5 min after brain injury. These results suggest that increased activity of PLC may contribute to increases in levels of cellular diacylglycerol and inositol trisphosphate in the IC (the greatest site of injury), and to a smaller extent in the IH and CC, after lateral FP brain injury. It is likely that this increased PLC activity is caused by alteration in either the levels or activities of one or more of its isozymes (PLC, PLC, and PLC) after FP brain injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号