首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2009年   1篇
  1992年   2篇
  1988年   4篇
  1985年   1篇
  1980年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Temperature dependence of anion transport in the human red blood cell   总被引:2,自引:0,他引:2  
Arrhenius plots of chloride and bromide transport yield two regions with different activation energies (Ea). Below 15 or 25 degrees C (for Cl- and Br-, respectively), Ea is about 32.5 kcal/mol; above these temperatures, about 22.5 kcal/mol (Brahm, J. (1977) J. Gen. Physiol. 70, 283-306). For the temperature dependence of SO4(2-) transport up to 37 degrees C, no such break could be observed. We were able to show that the temperature coefficient for the rate of SO4(2-) transport is higher than that for the rate of denaturation of the band 3 protein (as measured by NMR) or the destruction of the permeability barrier in the red cell membrane. It was possible, therefore, to extend the range of flux measurements up to 60 degrees C and to show that, even for the slowly permeating SO4(2-) in the Arrhenius plot, there appears a break, which is located somewhere between 30 and 37 degrees C and where Ea changes from 32.5 to 24.1 kcal/mol. At the break, the turnover number is approx. 6.9 ions/band 3 per s. Using 35Cl- -NMR (Falke, Pace and Chan (1984) J. Biol. Chem. 259, 6472-6480), we also determined the temperature dependence of Cl- -binding. We found no significant change over the entire range from 0 to 57 degrees C, regardless of whether the measurements were performed in the absence or presence of competing SO4(2-). We conclude that the enthalpy changes associated with Cl- - or SO4(2-)-binding are negligible as compared to the Ea values observed. It was possible, therefore, to calculate the thermodynamic parameters defined by transition-state theory for the transition of the anion-loaded transport protein to the activated state for Cl-, Br- and SO4(2-) below and above the temperatures at which the breaks in the Arrhenius plots are seen. We found in both regions a high positive activation entropy, resulting in a low free enthalpy of activation. Thus the internal energy required for carrying the complex between anion and transport protein over the rate-limiting energy barrier is largely compensated for by an increase of randomness in the protein and/or its aqueous environment.  相似文献   
2.
U Hahn  H Hanssum  H Rüterjans 《Biopolymers》1985,24(7):1147-1156
The anisotropic rotational motion of the backbone and the side chains of poly(L -glutamic acid) in the α-helical structure was investigated using the 13C-T1 and T2 relaxation times of all carbon atoms with directly attached protons, obtained at a 13C-Larmor frequency of 67.89 MHz. The evaluation of the nmr data was carried out according to the previously derived anisotropic diffusion model, in which the macromolecule is considered a rigid rod. The rotation of the backbone is characterized by two diffusion constants, D1 and D3, describing the rotation perpendicular to and around the symmetry axis. The additional internal motion of the Cβ-methylene group is described as a jump process with a jump rate, k1, between two allowed rotametric states. Steric considerations indicate that the occupation of the third rotameric position is forbidden. The rotation of the Cγ-methylene group is decribed as a one-dimensional diffusion process around the Cβ–Cγ bond. Investigation of the temperature dependence of the relaxation parameters led to the temperature dependence of the dynamic parameters. Activation energies were determined from these data. The dynamic parameters obtained for poly(L -glutamic acid) at 291 K are compared with the corresponding results of a previous study of poly(L -lysine). The development of an anisotropic diffusion model for the motions of the rod-shaped poly(L -lysine) α-helix and its application to the interpretation of the 13C-relaxation data of this molecule have already been published previously. In this model, both the overall molecular tumbling and the various internal motions have been characterized by diffusion constants or jump rates typical for each process. These dynamic parameters can be calculated from the spin–lattice relaxation times, the spin–spin relaxation times and the NOE factors of the Cα, Cβ, and Cγ nuclei of the polypetide. In the present paper, we describe the application of the above-mentioned dynamic model to the interpretation of 13C-relaxation studies of a further homopolypeptide, poly(L -glutamic acid), in the α-helical structure. Furthermore, we studied the temperature dependence of the relaxation times of this polymer and determined the anisotropic diffusion parameters at each temperature. From their temperature dependence and from comparison of our present results with the data of our previous study of poly(L -lysine), we were able to derive new insights into the intramolecular diffusion processes and the excitation of various motions.  相似文献   
3.
4.
Arrhenius plots of chloride and bromide transport yield two regions with different activation energies (Ea). Below 15 or 25°C (for Cl and Br, respectively), Ea is about 32.5 kcal/mol; above these temperatures, about 22.5 kcal/mol (Brahm, J. (1977) J. Gen. Physiol. 70, 283–306). For the temperature dependence of SO42− transport up to 37°C, no such break could be observed. We were able to show that the temperature coefficient for the rate of SO42− transport is higher than that for the rate of denaturation of the band 3 protein (as measured by NMR) or the destruction of the permeability barrier in the red cell membrane. It was possible, therefore, to extend the range of flux measurements up to 60°C and to show that, even for the slowly permeating SO42− in the Arrhenius plot, there appears a break, which is located somewhere between 30 and 37°C and where Ea changes from 32.5 to 24.1 kcal/mol. At the break, the turnover number is approx. 6.9 ions/band 3 per s. Using 35Cl-NMR (Falke, Pace and Chan (1984) J. Biol. Chem. 259, 6472–6480), we also determined the temperature dependence of Cl-binding. We found no significant change over the entire range from 0 to 57°C, regardless of whether the measurements were performed in the absence or presence of competing SO42−. We conclude that the enthalpy changes associated with Cl-or SO42−-binding are negligible as compared to the Ea values observed. It was possible, therefore, to calculate the thermodynamic parameters defined by transition-state theory for the transition of the anion-loaded transport protein to the activated state for Cl, Br and SO42− below and above the temperatures at which the breaks in the Arrhenius plots are seen. We found in both regions a high positive activation entropy, resulting in a low free enthalpy of activation. Thus the internal energy required for carrying the complex between anion and transport protein over the rate-limiting energy barrier is largely compensated for by an increase of randomness in the protein and/or its aqueous environment.  相似文献   
5.
35Cl-NMR spectroscopy has been used to study the competition between anions, including nucleotides, on skeletal muscle sarcoplasmic reticulum membranes. Different chloride binding sites can be distinguished according to their Mg2+ sensitivity. Phosphate binding is enhanced by Mg2+ whereas the anion transport inhibitor pyridoxalphosphate-6-azophenyl-2'-sulfonic acid (PPAPS) binding is not. The affinity of the enzyme for the Mg-adenylyl imidodiphosphate (MgAMP-PNP) complex is decreased whereas that for MgATP is increased. Three sets of binding sites can be discriminated from which chloride is displaced by different anions with varying efficiency. High affinity binding of AMP-PNP and PPAPS occurs at the same site, that can also be occupied by phosphate. Low-affinity binding of PPAPS and AMP-PNP also coincides, but in a site where phosphate binding is negligible. ATP and ADP bind to both sites. In the presence of Mg2+ a third anion binding site can be occupied by phosphate but neither by AMP-PNP nor PPAPS.  相似文献   
6.
G. Renger  B. Hanssum  H. Gleiter  H. Koike  Y. Inoue 《BBA》1988,936(3):435-446
The interaction of exogenous quinones with the Photosystem II (PS II) acceptor side has been analyzed by measurements of flash-induced 320 nm absorption changes, transient flash-induced variable fluorescence changes, thermoluminescence emission and oxygen yield in dark-adapted thylakoids and PS II membrane fragments. Two classes of 1,4-benzoquinones were shown to give rise to remarkably different reaction patterns. (A) Phenyl-p-benzoquinone (Ph-p-BQ) -type compounds give rise to a marked binary oscillation of the initial amplitudes of 320 nm absorption changes induced by a flash train in dark-adapted PS II membrane fragments and a retardation of the decay kinetics of the flash-induced variable fluorescence. The electron transfer reactions to these type of quinones are severely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). (B) In the presence of tribromotoluquinone (TBTQ) a different oscillation pattern of the 320 nm absorption changes is observed characterized by a marked relaxation after the first flash in the 5 ms domain. This relaxation is insensitive to 10 μM DCMU. Likewise the decay of the flash-induced variable fluorescence in TBTQ-treated samples is much less sensitive to DCMU than in control. The thermoluminescence emission exhibits an oscillation in samples incubated for 5 min with TBTQ before addition of 30 μM DCMU. Under the same conditions a significant flash-induced oxygen evolution is observed only after the third and fourth flash, respectively, whereas in the presence of TBTQ alone a normal oscillation pattern is observed. The different functional patterns of PS II caused by the two types of classes of exogenous quinones are interpreted by their binding properties: a noncovalent association with the QB-site of Ph-p-BQ-type quinones versus a tight (covalent?) binding in the vicinity of QA (possibly also at the QB-site) in the case of halogenated 1,4-benzoquinones. The mechanistic implications of these findings are discussed.  相似文献   
7.
The possibility to determine the difference spectra i+1j of each univalent redox step SiSi+1(i=0,...3) of the water-oxidizing enzyme system was analyzed by theoretical calculations and by measurements of 320 nm absorption changes induced by a train of saturating laser flashes (FWHM:7 ns) in PS II membrane fragments. It was found: a) Lipophilic quinones complicate the experimental determination of optical changes due the Si-state transitions because they lead to an additional binary oscillation probably caused by a reductant-induced oxidation of the Fe2+ at the PS II acceptor side. b) In principle, a proper separation can be achieved at sufficiently high K3[Fe(CN)6] concentrations. c) An unequivocal deconvolution into the difference spectra i+1j of flash train-induced optical changes which are exclusively due to Si-state transitions is impossible unless the Kok parameters , and [Si]0 can be determined by an independent method.Measurements of the oxygen yield induced by a flash train reveals, that in thylakoids and PS II membrane fragments Si is the stable state of dark adapted samples even at alkaline pH (up to pH=9). However, in PS II membrane fragments at pH>7.7 the misses probability markedly increases, in contrast to the properties of intact thylakoids. Based on these data the possibility is discussed that an equilibrium exists of two types of S2-states with different properties.Abbreviations DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - QA.QB primary and secondary plastoquinone of PS II - Ph-p-BQ phenyl-p-benzoquinone - PS II photosystem II - S1 redox state of the catalytic site of water oxidation - Z redox component connecting P680 with the catalytic site of water oxidation Presented at the Japan/US Binational Seminar on Solar Energy Conversion: Photochemical Reaction Centers and Oxygen Evolving Complexes of Plant Photosynthesis, Okazaki, Japan, March 17–21, 1987.  相似文献   
8.
H. Hanssum  H. Rüterjans 《Biopolymers》1980,19(9):1571-1585
13C spin-lattice relaxation times of poly(L -lysine) have been obtained at 67.9 MHz in aqueous solution and in a mixed solvent (40% methanol/60% water). A concomitant determination of the conformation by CD permits the correlation of conformation and rotational diffusion of the polymer. The dependence on pH of the spin-lattice relaxation times of the 13Cα and the side-chain carbon resonances reflects the diffusional motion in the random-coil conformation, in the helix–coil transition, and in the conformation of the α-helix. In the mixed solvent the reorientational correlation time of the Cα-Hα vector increases from τ = 0.37 nsec (random coil) to τ = 12.0 nsec (α-helix). In aqueous solution the correlation time of this vector increases from τ = 0.33 nsec (random coil) to τ ? 11 nsec. The reorientation rates of the side-chain methylene groups in the two solvents are markedly different. The reorientation of all methylene groups is reduced in the mixed solvent.  相似文献   
9.
G Renger  B Hanssum 《FEBS letters》1992,299(1):28-32
The temperature dependence of the rate constants of the univalent redox steps YzoxSi----YzSi + 1 (i = 0,1,2) and YzoxS3----(YzS4)----YzSo + O2 in the water oxidase was investigated by measuring time resolved absorption changes at 355 nm induced by a laser flash train in dark adapted PS II membrane fragments from spinach. Activation energies of 5.0, 12.0 and 36.0 kJ/mol were obtained for the reactions YzoxSi----YzSi + 1 with i = 0,1 and 2, respectively. The reaction YzoxS3----(YzS4)----YzS0 + O2 exhibits a temperature dependence with a characteristic break point at 279 K with activation energies of 20 kJ/mol (T greater than 279 K) and 46 kJ/mol (T less than 279 K). Evaluation of the data within the framework of the classical Marcus theory of nonadiabatic electron transfer [(1985) Biochim. Biophys. Acta 811, 265-322] leads to the conclusion that the S2 oxidation to S3 is coupled with significant structural changes. Furthermore, the water oxidase in S3 is inferred to attain two different conformational states with populations that markedly change at a characteristic transition temperature.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号