首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2018年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2000年   1篇
  1996年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Structural data are presented on the protamine gene cluster (PGC) of human, mouse, rat, and bull. By restriction mapping we demonstrate that the organization of the protamine cluster is conserved throughout all four species, i.e., the genes are situated in a head to tail arrangement in the order: protamine l-protamine 2-transition protein 2. Further, we established the nucleotide sequence of the entire human PGC (25 kb in total) and the 3′ portion of the rat protamine cluster (PRM2 and TNP2 genes and intergenic region). In addition, a 1 kb fragment of the bovine and murine protamine cluster, situated between PRM2 and TNP2, was sequenced. This fragment is conserved regarding sequence, position, and orientation in all species examined, and was classified as likely coding region by gene recognition program GRAIL. Using the rat fragment as a probe in RNA blots, we detected a testis-specific signal of about 0.5 kb. Finally, we demonstrate a high density of Alu elements, both full and fragmented copies, in the human PGC and discuss their localization with respect to evolutionary and functional aspects. © 1996 Wiley-Liss, Inc.  相似文献   
3.
Starch and sugar content of potato tubers are quantitative traits, which are models for the candidate gene approach for identifying the molecular basis of quantitative trait loci (QTL) in noninbred plants. Starch and sugar content are also important for the quality of processed products such as potato chips and French fries. A high content of the reducing sugars glucose and fructose results in inferior chip quality. Tuber starch content affects nutritional quality. Functional and genetic models suggest that genes encoding invertases control, among other things, tuber sugar content. The invGE/GF locus on potato chromosome IX consists of duplicated invertase genes invGE and invGF and colocalizes with cold-sweetening QTL Sug9. DNA variation at invGE/GF was analyzed in 188 tetraploid potato cultivars, which have been assessed for chip quality and tuber starch content. Two closely correlated invertase alleles, invGE-f and invGF-d, were associated with better chip quality in three breeding populations. Allele invGF-b was associated with lower tuber starch content. The potato invertase gene invGE is orthologous to the tomato invertase gene Lin5, which is causal for the fruit-sugar-yield QTL Brix9-2-5, suggesting that natural variation of sugar yield in tomato fruits and sugar content of potato tubers is controlled by functional variants of orthologous invertase genes.  相似文献   
4.
Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of crop yield and quality in infested fields. Field populations of G. pallida containing mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most relevant for potato cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to G. pallida would facilitate the development of resistant varieties. A tetraploid F1 hybrid family SR-Gpa segregating for quantitative resistance to G.␣pallida was developed and evaluated for resistance to G. pallida population ‘Chavornay’. Two subpopulations of 30 highly resistant and 30 susceptible individuals were selected and genotyped for 96 single nucleotide polymorphism (SNP) markers tagging 12 genomic regions on 10 potato chromosomes. Seven SNPs were found significantly linked to the nematode resistance, which were all located within a resistance ‘hotspot’ on potato chromosome V. A haplotype model for these seven SNPs was deduced from the SNP patterns observed in the SR-Gpa family. A PCR assay ‘HC’ was developed, which specifically detected the SNP haplotype c that was linked with high levels of nematode resistance. The HC marker was only found in accessions of S.␣vernei. Screening with the HC marker 34 potato varieties resistant to G. pallida pathotypes Pa2 and/or Pa3 and 22 susceptible varieties demonstrated that the HC marker was highly diagnostic for presence of high levels of resistance to G. pallida pathotype Pa2/Pa3.Amirali Sattarzadeh and Ute Achenbach contributed equally to the work  相似文献   
5.
The damage caused by the parasitic root cyst nematode Globodera pallida is a major yield-limiting factor in potato cultivation . Breeding for resistance is facilitated by the PCR-based marker ‘HC’, which is diagnostic for an allele conferring high resistance against G. pallida pathotype Pa2/3 that has been introgressed from the wild potato species Solanum vernei into the Solanum tuberosum tetraploid breeding pool. The major quantitative trait locus (QTL) controlling this nematode resistance maps on potato chromosome V in a hot spot for resistance to various pathogens including nematodes and the oomycete Phytophthora infestans. An unstructured sample of 79 tetraploid, highly heterozygous varieties and breeding clones was selected based on presence (41 genotypes) or absence (38 genotypes) of the HC marker. Testing the clones for resistance to G. pallida confirmed the diagnostic power of the HC marker. The 79 individuals were genotyped for 100 single nucleotide polymorphisms (SNPs) at 10 loci distributed over 38 cM on chromosome V. Forty-five SNPs at six loci spanning 2 cM in the interval between markers GP21-GP179 were associated with resistance to G. pallida. Based on linkage disequilibrium (LD) between SNP markers, six LD groups comprising between 2 and 18 SNPs were identified. The LD groups indicated the existence of multiple alleles at a single resistance locus or at several, physically linked resistance loci. LD group C comprising 18 SNPs corresponded to the ‘HC’ marker. LD group E included 16 SNPs and showed an association peak, which positioned one nematode resistance locus physically close to the R1 gene family. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
6.
Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.  相似文献   
7.
The obligate biotrophic, soil-borne fungus Synchytrium endobioticum causes wart disease of potato (Solanum tuberosum), which is a serious problem for crop production in countries with moderate climates. S. endobioticum induces hypertrophic cell divisions in plant host tissues leading to the formation of tumor-like structures. Potato wart is a quarantine disease and chemical control is not possible. From 38 S. endobioticum pathotypes occurring in Europe, pathotypes 1, 2, 6 and 18 are the most relevant. Genetic resistance to wart is available but only few current potato varieties are resistant to all four pathotypes. The phenotypic evaluation of wart resistance is laborious, time-consuming and sometimes ambiguous, which makes breeding for resistance difficult. Molecular markers diagnostic for genes for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 would greatly facilitate the selection of new, resistant cultivars. Two tetraploid half-sib families (266 individuals) segregating for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 were produced by crossing a resistant genotype with two different susceptible ones. The families were scored for five different wart resistance phenotypes. The distribution of mean resistance scores was quantitative in both families. Resistance to pathotypes 2, 6 and 18 was correlated and independent from resistance to pathotype 1. DNA pools were constructed from the most resistant and most susceptible individuals and screened with genome wide simple sequence repeat (SSR), inverted simple sequence region (ISSR) and randomly amplified polymorphic DNA (RAPD) markers. Bulked segregant analysis identified three SSR markers that were linked to wart resistance loci (Sen). Sen1-XI on chromosome XI conferred partial resistance to pathotype 1, Sen18-IX on chromosome IX to pathotype 18 and Sen2/6/18-I on chromosome I to pathotypes 2,6 and 18. Additional genotyping with 191 single nucleotide polymorphism (SNP) markers confirmed the localization of the Sen loci. Thirty-three SNP markers linked to the Sen loci permitted the dissection of Sen alleles that increased or decreased resistance to wart. The alleles were inherited from both the resistant and susceptible parents.  相似文献   
8.
Complex characters of plants such as starch and sugar content of seeds, fruits, tubers and roots are controlled by multiple genetic and environmental factors. Understanding their molecular basis will facilitate diagnosis and combination of superior alleles in crop improvement programs (“precision breeding”). Association genetics based on candidate genes is one approach toward this goal. Tetraploid potato varieties and breeding clones related by descent were evaluated for 2 years for chip quality before and after cold storage, tuber starch content, yield and starch yield. Chip quality is inversely correlated with tuber sugar content. A total of 36 loci on 11 potato chromosomes were evaluated for natural DNA variation in 243 individuals. These loci included microsatellites and genes coding for enzymes that function in carbohydrate metabolism or transport (candidate loci). The markers were used to analyze population structure and were tested for association with the tuber quality traits. Highly significant and robust associations of markers with 1–4 traits were identified. Most frequent were associations with chip quality and tuber starch content. Alleles increasing tuber starch content improved chip quality and vice versa. With two exceptions, the most significant and robust associations (q < 0.01) were observed with DNA variants in genes encoding enzymes that function in starch and sugar metabolism or transport. Comparing linkage and linkage disequilibrium between loci provided evidence for the existence of large haplotype blocks in the breeding materials analyzed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
9.

Key message

We achieved improved mapping resolution of the major wart resistance locus Xla-TNL containing also Sen1 in a dihaploid population using SNP data and developed additional markers with diagnostic value in tetraploid varieties.

Abstract

We analyzed a segregating monoparental dihaploid potato population comprising 215 genotypes derived from a tetraploid variety that is highly resistant to Synchytrium endobioticum pathotypes 18 and 6. The clear bimodal segregation for both pathotypes indicated that a major dominant resistance factor in a simplex allele configuration was present in the tetraploid donor genotype. Compared to that in previous analyses of the same tetraploid donor in conventional crosses with susceptible tetraploid genotypes, a segregation pattern with a reduced genetic complexity of resistance in dihaploids was observed here. Using the 12.8 k SolCAP SNP array, we mapped a resistance locus to the Xla-TNL region containing also Sen1 on potato chromosome 11. The improved mapping resolution provided by the monoparental dihaploids allowed for the localization of the genes responsible for the resistance to both pathotypes in an interval spanning less than 800 kbp on the reference genome. Furthermore, we identified eight molecular markers segregating without recombination to pathotype 18 and pathotype 6 resistance. Also, two developed markers display improved diagnostic properties in an independent panel of tetraploid varieties. Overall, our data provide the highest resolution mapping of wart resistance genes at the Xla-TNL locus thus far.
  相似文献   
10.
The oomycete Phytophthora infestans causes late blight, the most relevant disease of potato (Solanum tuberosum) worldwide. Field resistance to late blight is a complex trait. When potatoes are cultivated under long day conditions in temperate climates, this resistance is correlated with late plant maturity, an undesirable characteristic. Identification of natural gene variation underlying late blight resistance not compromised by late maturity will facilitate the selection of resistant cultivars and give new insight in the mechanisms controlling quantitative pathogen resistance. We tested 24 candidate loci for association with field resistance to late blight and plant maturity in a population of 184 tetraploid potato individuals. The individuals were genotyped for 230 single nucleotide polymorphisms (SNPs) and 166 microsatellite alleles. For association analysis we used a mixed model, taking into account population structure, kinship, allele substitution and interaction effects of the marker alleles at a locus with four allele doses. Nine SNPs were associated with maturity corrected resistance (P < 0.001), which collectively explained 50% of the genetic variance of this trait. A major association was found at the StAOS2 locus encoding allene oxide synthase 2, a key enzyme in the biosynthesis of jasmonates, plant hormones that function in defense signaling. This finding supports StAOS2 as being one of the factors controlling natural variation of pathogen resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号