首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1191篇
  免费   106篇
  2023年   7篇
  2022年   6篇
  2021年   16篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   14篇
  2016年   16篇
  2015年   29篇
  2014年   42篇
  2013年   47篇
  2012年   70篇
  2011年   82篇
  2010年   51篇
  2009年   51篇
  2008年   50篇
  2007年   56篇
  2006年   56篇
  2005年   55篇
  2004年   44篇
  2003年   47篇
  2002年   54篇
  2001年   31篇
  2000年   21篇
  1999年   31篇
  1998年   26篇
  1997年   21篇
  1996年   18篇
  1995年   13篇
  1994年   12篇
  1993年   17篇
  1992年   22篇
  1991年   19篇
  1990年   24篇
  1989年   25篇
  1988年   16篇
  1987年   14篇
  1986年   19篇
  1985年   14篇
  1984年   9篇
  1983年   14篇
  1982年   13篇
  1981年   12篇
  1980年   15篇
  1979年   7篇
  1978年   12篇
  1977年   9篇
  1976年   5篇
  1974年   6篇
  1972年   6篇
排序方式: 共有1297条查询结果,搜索用时 15 毫秒
1.
Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe‐dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light‐grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome‐deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid‐to‐nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid‐encoded protein that depends on phytochromes and the functional state of chloroplasts.  相似文献   
2.
By means of new plastic stereotactic ring and head fixers, stereotactic procedures can be combined with MRI, with stereotactic coordinates obtained from the MRI images. The method was rechecked against CT stereotaxy and shows a good correspondence of the target coordinates. With MRI stereotaxy, structures near bony regions will be more accessible than with CT stereotaxy. Moreover, the MRI procedure seems to have advantages for functional therapy without the necessity of contrast ventriculography.  相似文献   
3.
4.
5.
6.
7.
Chenopods synthesize betaine in the chloroplast via a two-step oxidation of choline: choline → betaine aldehyde → betaine. Our previous experiments with intact chloroplasts, and in vivo18O2 labeling studies, led us to propose that the first step is mediated by a monooxygenase which uses photosynthetically generated reducing power (C Lerma, AD Hanson, D Rhodes [1988] Plant Physiol 88: 695-702). Here, we report the detection of such an activity in vitro. In the presence of O2 and reduced ferredoxin, the stromal fraction from spinach (Spinacia oleracea) chloroplasts converted choline to betaine aldehyde at rates similar to those in intact chloroplasts (20-50 nanomoles per hour per milligram protein). Incorporation of 18O from 18O2 by the in vitro reaction was demonstrated by fast atom bombardment mass spectrometry. Ferredoxin could be reduced either with thylakoids in the light, or with NADPH plus ferredoxin-NADP reductase in darkness; NADPH alone could not substitute for ferredoxin. No choline-oxidizing activity was detected in the stromal fraction of pea (Pisum sativum L.), a species that does not accumulate betaine. The spinach choline-oxidizing enzyme was stimulated by 10 millimolar Mg2+, had a pH optimum close to 8, and was insensitive to carbon monoxide. The specific activity was increased threefold in plants growing in 200 millimolar NaCl. Gel filtration experiments gave a molecular weight of 98 kilodaltons for the choline-oxidizing enzyme, and provided no evidence for other electron carriers which might mediate the reduction of the 98-kilodalton enzyme by ferredoxin.  相似文献   
8.
Muteins, i.e. proteins altered by mutation of their genes, of interleukin 2 (Il2) were generated by oligonucleotide-directed mutagenesis in vitro. All acidic and basic residues conserved between man and mouse were exchanged as well as four lipophilic residues contained within four hydrophobic segments of the protein. The muteins were produced in Escherichia coli and submitted to a renaturation and purification protocol, before bioactivity and receptor binding of each of them was determined. All muteins besides two (K44/T125 and Q110/T125) could be renatured and purified. One mutein (K94/T125) exhibited a more than tenfold-improved renaturation yield. One amino exchange (Asp-20 to Asn) resulted in an about 20-fold reduction in proliferative activity and high-affinity receptor binding. The binding to the low-affinity Il2-binding protein (Tac antigen) was unimpaired. A second exchange (Arg-38 to Gln) had no effect on proliferative activity. The binding to both the high- and the low-affinity receptor, however, was reduced about 20-fold. Preliminary trials on the stability of these muteins by guanidinium hydrochloride denaturation studies detected no differences between wild-type interleukin 2 and muteins. It is suggested that Asp-20 forms part of the binding site for the large receptor subunit whereas Arg-38 is involved in the contact site to the small subunit.  相似文献   
9.
Bacterial Metabolism of 2,6-Xylenol   总被引:3,自引:3,他引:0       下载免费PDF全文
Strain DM1, a Mycobacterium sp. that utilizes 2,6-xylenol, 2,3,6-trimethylphenol, and o-cresol as sources of carbon and energy, was isolated. Intact cells of Mycobacterium strain DM1 grown with 2,6-xylenol cooxidized 2,4,6-trimethylphenol to 2,4,6-trimethylresorcinol. 4-Chloro-3,5-dimethylphenol prevents 2,6-xylenol from being totally degraded; it was quantitatively converted to 2,6-dimethylhydroquinone by resting cells. 2,6-Dimethylhydroquinone, citraconate, and an unidentified metabolite were detected as products of 2,6-xylenol oxidation in cells that were partially inactivated by EDTA. Under oxygen limitation, 2,6-dimethylhy-droquinone, citraconate, and an unidentified metabolite were released during 2,6-xylenol turnover by resting cells. Cell extracts of 2,6-xylenol-grown cells contained a 2,6-dimethylhydroquinone-converting enzyme. When supplemented with NADH, cell extracts catalyzed the reduction of 2,6-dimethyl-3-hydroxyquinone to 2,6-dimethyl-3-hydroxyhydroquinone. Since a citraconase was also demonstrated in cell extracts, a new metabolic pathway with 2,6-dimethyl-3-hydroxyhydroquinone as the ring fission substrate is proposed.  相似文献   
10.
Summary A negative feedback interaction between luminosity type horizonatal cells (HCs) and green-sensitive cones generates the long-wavelength-sensitive depolarizing response in biphasic chromaticity type HCs. This interaction is suppressed in the dark and is potentiated by light adaptation of the retina. HCs are morphologically plastic; during light adaptation, their dendritic terminals within cone pedicles extend, giving rise to spinules. This paper examines whether there is a quantitative correlation between the time course of light-dependent formation of the spinules and enhancement of the feedback interaction. The strength of the feedback interaction in isolated retinac of the roach was determined as the neutral wavelength at which reversal of spectral response polarity occurred in biphasic HCs. A good correlation was found between the neutral wavelength and the spinule/ribbon ratios of retinae. Biphasic HCs were intracellularly stained with horseradish peroxidase and the correlative ultrastructure of the contacted pedicles was examined. Neutral wavelength was found to be correlated with the spinule number, weighted according to the number of synaptic contacts mediating feed-forward transmission. The latter was estimated from the total number of labelled Cb/H2 HC processes (central and lateral) at synaptic triads. A model in which spinules mediate the negative feedback interaction of HCs in the retina of cyprinid fish is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号