首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1076篇
  免费   127篇
  2023年   8篇
  2022年   12篇
  2021年   41篇
  2020年   19篇
  2019年   28篇
  2018年   15篇
  2017年   25篇
  2016年   44篇
  2015年   62篇
  2014年   69篇
  2013年   90篇
  2012年   79篇
  2011年   83篇
  2010年   49篇
  2009年   38篇
  2008年   48篇
  2007年   65篇
  2006年   44篇
  2005年   47篇
  2004年   40篇
  2003年   52篇
  2002年   46篇
  2001年   13篇
  2000年   11篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   8篇
  1995年   11篇
  1994年   4篇
  1992年   10篇
  1991年   9篇
  1990年   9篇
  1988年   7篇
  1987年   4篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1980年   5篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1973年   7篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
  1969年   5篇
  1968年   3篇
  1965年   3篇
  1957年   3篇
排序方式: 共有1203条查询结果,搜索用时 31 毫秒
1.
The recent identification of VKORC1 has made important contributions to our understanding of the vitamin K cycle. The VKORC1 enzyme was shown to be the molecular target of coumarin drugs. Mutations and polymorphisms in coding and noncoding regions of the VKORC1 gene have been shown to cause both a partial to total coumarin resistance and coumarin sensitivity. Availability of molecular diagnostics (VKORC1, CYP2C9) and drug monitoring by HCPLC (determination of coumarin, vitamin K, and vitamin K epoxide levels) is helpful for detecting hereditary and acquired factors influencing coumarin therapy. In the future, these tools may be instrumental in designing individualized oral anticoagulation therapy regimens.  相似文献   
2.
3.
Many prokaryotic organisms have adapted to incredibly extreme habitats. The genomes of such extremophiles differ from their non-extremophile relatives. For example, some proteins in thermophiles sustain high temperatures by being more compact than homologs in non-extremophiles. Conversely, some proteins have increased volumes to compensate for freezing effects in psychrophiles that survive in the cold. Here, we revealed that some differences in organisms surviving in extreme habitats correlate with a simple single feature, namely the fraction of proteins predicted to have long disordered regions. We predicted disorder with different methods for 46 completely sequenced organisms from diverse habitats and found a correlation between protein disorder and the extremity of the environment. More specifically, the overall percentage of proteins with long disordered regions tended to be more similar between organisms of similar habitats than between organisms of similar taxonomy. For example, predictions tended to detect substantially more proteins with long disordered regions in prokaryotic halophiles (survive high salt) than in their taxonomic neighbors. Another peculiar environment is that of high radiation survived, e.g. by Deinococcus radiodurans. The relatively high fraction of disorder predicted in this extremophile might provide a shield against mutations. Although our analysis fails to establish causation, the observed correlation between such a simplistic, coarse-grained, microscopic molecular feature (disorder content) and a macroscopic variable (habitat) remains stunning.  相似文献   
4.
Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention—selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87 μatm CO2, SH) and fluctuating high CO2 (1012±244 μatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs.  相似文献   
5.
(1) The ability to produce cephalodia is usually a genus-specific character in lichens. (2)Lecidea shushanii Thoms., is a member of the genusTephromela, closely related toT. aglaea. It is not clear, whether or not the cephalodia of this taxon are true cephalodia or colonies of epiphytic cyanobacteria and whether or notLecidea shushanii is an independent species. (3)Lecidea dovrensis Nyl., is, in contrast to the traditional concept, not conspecific withLecidea alpestris Sommerf., but an earlier name forLecidea pallida Th. Fr. (4)Lecidea dovrensis is described in some detail. Chemically the species is characterized by the presence of isousnic acid (previously unknown in lecideoid lichens). It is restricted to areas north of the 60th parallel with an oceanic climate. (5) In connection with the attempt to clarify the taxonomic relationships ofLecidea dovrensis, figures of ascus apical structures of the following species are given (marked by an asterisk are genera where we found discrepancies with published data):Austrolecia antarctica, Catillaria chalybeia, Lecidea alpestris, L. caesioatra, L. limosa, Lecidoma demissum, Koerberiella wimmeriana, Micarea assimilata, M. crassipes, M. melaenida, M. prasina, Pilophorus robustus, Placodiella olivacea, Placolecis opaca, Porpidia trullisata, Protoblastenia rupestris, Psilolechia lucida, Psorula rufonigra, Squamarina gypsacea, Xanthopsorella texana. (6) Among crustaceous lichens we find no groups related toLecidea dovrensis. We supportTimal's concept of including this species in the genusPilophorus. Pilophorus, as well asLecidea dovrensis is characterized by the same ascus type, by a similar structure of thallus, cephalodia, paraphyses, and ascocarp (although there is no pseudopodetium developed inLecidea dovrensis), and the presence of isousnic acid. In addition, both taxa are restricted to cool oceanic climates and non-calciferous substrates. The following combination is proposed:Pilophorus dovrensis (Nyl.)Timdal, Hertel & Rambold, comb. nova. (7) The species of theLecidea alpestris-group form an independent genus, probably near toAustrolecia Hertel.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   
6.
Summary To provide a hitherto lacking review which focuses on gill surface area of freshwater fish, we collected and analysed morphometric data from the literature. The scaling exponent of gill area ranges from 0.36 to 1.13, with a mean value of 0.76. The absolute values for the largest gill areas are about 5 times as high as those of the smallest. This range resembles that of marine fish, if specially adapted steady swimmers, such as tunnies and some sharks, are excluded. Generally it appears that the gill areas of freshwater fish are smaller than those of comparable marine species. To establish whether a relationship exists between gill area and swimming activity or oxygen content of water, the activity of each species and the oxygen content of its habitat were estimated and checked against the gill area. ANOVA revealed that activity explains the presence of the smallest gill areas only, while oxygen content does not correlate with gill area at all. The morphometric variables determining gill area (total length of filaments, average lamellar density, average lamellar area) are highly correlated; total gill area correlates mainly with lamellar density and to a lesser degree with filament length; lamellar area varies independently. Different populations of the same species exhibit striking differences with respect to gill areas, total length of filaments, average lamellar density and average lamellar area. These differences point to a substantial morphological plasticity of the gill system.  相似文献   
7.
No major differences have been found in series of Staphylococcus aureus strains which reverted from L-phase, either by pyrolysis mass spectrometry or by phage-typing or sensitivity testing. In L-phase they have been subcultured for a long time or transformed/reverted many times into/from L-phase. Plasmids were lost during transformations/reversions, but there was some difference between the tetracycline-connected plasmids on the one hand and the erythromycin-connected ones on the other.This investigation was supported by the Foundation for Fundamental Research on Matter (F.O.M.), subsidized by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).  相似文献   
8.
9.
Summary A transitory cell division block, or excision effect, occurs in the meristem of roots after excision and transfer to culture medium. This block can be induced, in intact seedling roots, by exogenous treatment with ethylene gas. With continuous treatment, the block is longer and the recovery less than after a 4 hour pulse. In excised roots the excision effect can be eliminated by treatment with an inhibitor of ethylene synthesis (aminoethoxyvinylglycine) or action (silver thiosulfate). These experiments provide evidence to support the hypothesis that ethylene from the wounded end of an excised root is involved in a process resulting in a transitory block in cell cycle progression in the meristem. The implications of this hypothesis are discussed.  相似文献   
10.
Roots growing under low water potential commonly exhibit a marked decrease in growth rate and in diameter. Using median longitudinal sections of fixed maize (Zea mays L. cv WF9 × Mo 17) seedling roots, we investigated the cellular basis for these effects. Cortical cells in the shortened elongation zone of water stressed roots were longer than cortical cells in the comparable location of well-watered roots. Nearly twofold differences in cell length were seen in the region 2 to 4 millimeters behind the root apex. The shortened growth zone, however, leads to a final mean cortical cell length approximately 30% shorter in the stressed roots. These differences were present regardless of the age of the control roots. These data, and the slower growth rate seen in water-stressed roots, suggest that the water deficit causes a significant reduction in the rate of cell supply to the cortical cell files.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号