首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Hybridisation is the interbreeding of genetically distinct groups that can lead to introgression – an exchange of genetic material between species. Hybridisation is of conservation concern when an alien invasive species is involved, as it can lead to a loss of local genetic adaptations and genetic diversity. Hybridisation is a significant threat for many dabbling ducks where interbreeding with the closely related invasive Mallard Anas platyrhynchos is extremely common. Phenotypic evidence suggests that Mallard populations in South Africa hybridise with the indigenous Yellow-billed Duck Anas undulata. The aim of this study was to determine the incidence of hybridisation between Yellow-billed Ducks, occurring in central and northwestern South Africa, and introduced Mallards. Genetic variation between Mallards, Yellow-billed Ducks, and their inferred hybrids was assessed using mitochondrial and microsatellite DNA markers. All samples inferred to be hybrids based on the phenotype were found to have Yellowbilled Duck mitochondrial DNA and showed minimal evidence of admixture across the microsatellite markers. Thus, these results do not support the notion that hybridisation between Mallards and Yellow-billed Ducks is prevalent in central and northwestern South Africa. However, hybridisation could be occurring where Mallards are found in higher abundance, such as in the Western Cape Province. Therefore, continued monitoring of this potential hybridisation should be performed frequently and throughout South Africa.  相似文献   
2.
Aim When interpreting genetic patterns across a landscape it is surprisingly difficult to disentangle the effects of landscape connectivity from those of species biology. Here, the spatial distributions of genetic variation of two sympatric elephant‐shrew species, the western rock elephant‐shrew (Elephantulus rupestris) and the round‐eared elephant‐shrew (Macroscelides proboscideus), are determined and compared. We selected these species because they have similar biologies but differ markedly in habitat use, the rationale being that differences in their genetic structure should be a result largely of landscape variables directly or indirectly affecting dispersal rather than of the biology of the species. Location South Africa and Namibia. Methods Mitochondrial sequence data (control region and cytochrome b) were used to describe the phylogeographic structure of these elephant‐shrew species across their distribution. To determine whether genetic variation is significantly structured, spatial analyses of molecular variation were performed. Isolation‐by‐distance versus alternative patterns of genetic structure was investigated using a Mantel test. Results Our analyses indicated an overall structured genetic profile for E. rupestris, a species closely associated with rocky outcrops. This was in contrast to a pattern mostly of isolation‐by‐distance across the distribution of M. proboscideus, a species found on gravel plains. Main conclusions Specific landscape features will differentially affect gene flow (both historical and current), and therefore also the spatial genetic structure, of species with markedly different habitat requirements. The genetic profiles for the two species included here support predictions based on the connectivity of their respective occupied habitats. The results also support the more general prediction that species with a naturally clustered distribution (such as E. rupestris) should have a more structured genetic pattern than those having a more continuous distribution (M. proboscideus).  相似文献   
3.
The White‐winged Flufftail (Sarothrura ayresi) is known to occur in the highland marshes of Ethiopia, as well as almost 4000 km in South Africa. The White‐winged Flufftail is listed globally as Critically Endangered. In South Africa the population is estimated to be <50 birds. These birds are severely threatened by habitat destruction. Thus far, no genetic studies have been conducted on S. ayresi to confirm genetic connectivity between the South African and Ethiopian populations. In this study, analysis of mitochondrial and nuclear markers was conducted for White‐winged Flufftail samples from South African and Ethiopian birds, as well as Red‐chested Flufftail (Sarothrura rufa) for species comparison. Analyses of the DNA regions identified three variations between the two populations, supporting the hypothesis that these two populations are not different species or subspecies but are rather one migrating population with different seasonal occupied ranges. However, these results do not exclude the possibility of additional breeding and nonbreeding sites. Low genetic diversity in the populations of White‐winged Flufftails was observed, which needs to be further elucidated with fast evolving co‐dominant markers such as microsatellites, as this low diversity may ultimately contribute to the extinction of the species.  相似文献   
4.
5.
The round-eared sengis or elephant-shrews (genus Macroscelides) exhibit striking pelage variation throughout their ranges. Over ten taxonomic names have been proposed to describe this variation, but currently only two taxa are recognized (M. proboscideus proboscideus and M. p. flavicaudatus). Here, we review the taxonomic history of Macroscelides, and we use data on the geographic distribution, morphology, and mitochondrial DNA sequence to evaluate the current taxonomy. Our data support only two taxa that correspond to the currently recognized subspecies M. p. proboscideus and M. p. flavicaudatus. Mitochondrial haplotypes of these two taxa are reciprocally monophyletic with over 13% uncorrected sequence divergence between them. PCA analysis of 14 morphological characters (mostly cranial) grouped the two taxa into non-overlapping clusters, and body mass alone is a relatively reliable distinguishing character throughout much of Macroscelides range. Although fieldworkers were unable to find sympatric populations, the two taxa were found within 50 km of each other, and genetic analysis showed no evidence of gene flow. Based upon corroborating genetic data, morphological data, near sympatry with no evidence of gene flow, and differences in habitat use, we elevate these two forms to full species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号