首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  2023年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   9篇
  2011年   13篇
  2010年   11篇
  2009年   3篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1991年   1篇
  1990年   1篇
  1981年   1篇
  1965年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
The synthesis of major storage globulin polypeptides has been examined in developing seeds of sunflower(Helianthus annuus L.). Analyses of total proteins and purified globulins, also called helianthinin, by gel electrophoresis and immunoelectrophoresis have shown that a burst of protein synthesis and accumulation occurs around 10 d after flowering. There is no mature globulin before that time and only small amounts of precursor forms can be detected. Thus, 10–12 d after flowering appears to be a transition period during which genetic information for the globulin becomes actively expressed. Immunoelectrophoresis has confirmed that globulin is the main storage protein, at seed maturation, accounting up to 70 % of total proteins per kernel. Pulse chase experiments have shown that synthesis initially involves the formation of high molecular mass precursors and that storage proteins are post-translationally processed. Intermediary products, with molecular mass higher than early translational products, can be detected, together with mature globulin polypeptides.  相似文献   
2.
In the present work, separate and combined effects of excessive potassium and magnesium deficiency on safflower (Carthamus tinctorius) were studied. Four treatments were considered: C (control treatment: complete medium containing 1.5 mM Mg), +KCl (excessive potassium treatment: complete medium added with 60 mM KCl), ?Mg (Mg-deficient treatment: containing 0.1 mM Mg), and DS (double stress treatment: Mg-deficient medium (0.1 mM Mg) added with 60 mM KCl. Excessive potassium effect on plant growth was more pronounced than that of Mg deficiency. The two stresses impaired differently plant organs; KCl application affected more roots than shoots, whereas Mg deficiency reduced only leaf biomass. Gas exchange and pigment concentrations and patterns were severely impaired by KCl and mainly by interactive effects of the two stresses. This led to obvious lipid peroxidation and electrolyte leakage. Mg deficiency did not induce lipid peroxidation and electrolyte leakage, but as applied with excessive potassium, it doubled the effect of the latter. Mineral analyses showed that major cation nutrition was disturbed by KCl and combined stresses and at a lower level by magnesium deficiency. Plants did not show an enhanced selectivity of Mg and Ca over K but they improved their use efficiencies.  相似文献   
3.
4.
When photosystem (PS) II-enriched membranes are exposed to strong light, cross-linking of the intrinsic D1 protein with the surrounding polypeptides and degradation of the D1 protein take place. The cross-linking of the D1 protein with the alpha-subunit of cytochrome b(559) is suggested to be an early event of photoinduced damage to the D1 protein (Barbato et al., FEBS Lett. 309 (1992) 165-169). The relationship between the cross-linking and the degradation of the D1 protein, however, is not yet clear. In the present study, we show that the addition of stromal extract from chloroplasts degrades the 41 kDa cross-linked product of D1/cytochrome b(559) alpha-subunit and enhances the degradation of the D1 protein. Incubation of the preilluminated PS II-enriched membranes with the stromal extract at 25 degrees C causes the degradation of the cross-linked product by more than 70%. The activity of the stromal extract showed a pH optimum at 8.0, and was enhanced by the addition of ATP or GTP. Consistent with the nucleotide effect, this stromal activity was eliminated by the preincubation of the stromal extract with apyrase, which hydrolyzes nucleotides. Also, the stromal activity was nearly fully inhibited by a serine-type protease inhibitor, 3,4-dichloroisocoumarin, which suggests participation of a serine-type protease(s).  相似文献   
5.
Seeds of bean (Phaseolus vulgaris L.) were germinated by soaking in distilled water or copper chloride solution. The relationships among copper excess treatment, germination rate, dry weight, sugar contents, and carbohydrase activities in cotyledon were investigated. Heavy metal stress provoked a diminution in germination rate and biomass mobilization, as compared with the control. A drastic disorder in soluble sugars export, especially glucose and fructose liberation, was also imposed after exposure to excess copper. This restricted the starch and sucrose breakdown in reserve tissue, as evidenced by the inhibition in the activities of α-amylase and invertase isoenzymes (soluble acid, soluble neutral, cell wall-bound acid).  相似文献   
6.
Fourteen-day-old bean seedlings were cultured in nutrient solution containing Cu2+ ions at various concentrations (50 and 75 μM of CuSO4) for 3 days. This excess of copper induced a reduction in the water volume absorbed by the plants. Moreover, this reduction was accompanied by an increase of the amount of copper taken up by the roots. Analysis by native gel electrophoresis of cell wall peroxidase activities in the roots revealed a stimulation of two anionic isoforms (A2 and A3) under cupric stress conditions. Moreover, the activity of phenylalanine ammonia lyase (EC. 4.3.1.5), which plays an important role in plant defense, was enhanced. Copper-treated bean roots showed modifications in the cell walls of various tissues. Label for lignin, callose, and suberin with berberine-aniline blue revealed abnormal cell wall thickenings in the endodermis, the phloem, and the xylem, especially in plants treated with 75 μM CuSO4.  相似文献   
7.
Cakile maritima is a local oilseed halophyte exhibiting potential for secondary metabolite production. In the present study, plant growth, leaf polyphenol content and antioxidant activity were comparatively analyzed in two C. maritima Tunisian accessions (Jerba and Tabarka, respectively sampled from arid and humid bioclimatic stages) under salt constraint. Three-week-old plants were subjected to 0, 100, and 400 mM NaCl for 28 days under glasshouse conditions. A significant variability in salt response was found between both accessions: while Tabarka growth (shoot biomass, leaf expansion) was significantly restricted at 100 and 400 mM NaCl, compared to the control, Jerba growth increased at 100mM before declining at 400 mM NaCl. The better behaviour of Jerba salt-challenged plants, compared to those of Tabarka, may be related to their higher polyphenol content (1.56- and 1.3-fold the control, at 100 and 400 mM NaCl respectively) and antioxidant activity (smaller IC(50) values for both 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging), associated with lower leaf MDA accumulation (ca. -66% of the control at 100mM NaCl). Taken together, our findings suggest that halophytes may be interesting for production of antioxidant compounds, and that the accession-dependent capacity to induce antioxidative mechanisms in response to salt, may result in a corresponding variability for growth sustainability.  相似文献   
8.
Excess chromium (Cr) exposure is associated with various pathological conditions including hematological dysfunction. The generation of oxidative stress is one of the plausible mechanisms behind Cr-induced cellular deteriorations. The efficacy of selenium (Se) to combat Cr-induced oxidative damage in the erythrocytes of adult rats was investigated in the current study. Female Wistar rats were randomly divided into four groups of six each: group I served as controls which received standard diet, group II received in drinking water K2Cr2O7 alone (700 ppm), group III received both K2Cr2O7 and Se (0.5 Na2SeO3 mg/kg of diet), and group IV received Se (0.5 mg/kg of diet) for 3 weeks. Rats exposed to K2Cr2O7 showed an increase of malondialdehyde and protein carbonyl levels and a decrease of sulfhydryl content, glutathione, non-protein thiol, and vitamin C levels. A decrease of enzyme activities like catalase, glutathione peroxidase, and superoxide dismutase activities was also noted. Co-administration of Se with K2Cr2O7 restored the parameters cited above to near-normal values. Therefore, our investigation revealed that Se was a useful element preventing K2Cr2O7-induced erythrocyte damages.  相似文献   
9.
Hydroxytyrosol‐rich extract (HRE) and hydroxytyrosol‐rich olive mill wastewater (HROMW) were used as exogenous growth enhancers to stimulate tomato seedling vigor. The tomato seeds soaking in 10% w/v HROMW or HRE solutions were optimum in maximally enhancing seedling performance according to biochemical seed vigor parameters. Biochemical parameters as the average glucose‐6‐phosphate dehydrogenase (G6PDH) activity in HRE‐treated seeds (915.11 nmoles min?1 mg?1 protein) was higher than control (629.58 nmoles min?1 mg?1 protein) and correlated with the increased phenolic content (3530 μg g?1 fw) and 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH)‐based antioxidant activity (70.60%), respectively. Some key enzymes, guaiacol peroxidase (GPX) (6100.65 nmoles min?1 mg?1 protein) and catalase (2.04 μmoles min?1 mg?1 protein), were also higher in response to treatments and correlated with enhanced phenolic content and antioxidant activity. This study supports the hypothesis that the exogenous phenolic application stimulates the pentose phosphate pathway through an over‐expression of endogenous phenolic synthesis and an increase in free‐radical scavenging antioxidant activity. Therefore, the current study indicates the enhancement of seed vigor by HRE especially and HROMW as reflected by the stimulation of biochemical responses.  相似文献   
10.
Changes in lipid composition were investigated on maize roots and shoots under aluminum stress. After 4d exposure to 100 microM Al, root growth was inhibited while shoot growth was not affected. In roots, the decrease of the DBI (double bond index) of total fatty acids may signal a decrease in membrane fluidity. The total lipids (TL) decreased by 49%, but phospholipids (PL), phosphatidylcholine (PC) and phosphatidylinositol (PI) increased to approximately 3-fold. The MGDG increased to 2-fold but no significant change was found in the DGDG. The steryl lipids (SL) increased by 69%. The SL/PL ratio decreased from 2.64 to 1.52 and the MGDG/DGDG ratio increased from 0.45 to 1.06 in roots of Al-stressed plants. Al leads to oxidative stress in roots of treated plants as indicated by the increase of malondialdehyde (MDA) concentrations. In shoots, changes in fatty acid composition were associated with an increase of the DBI in all lipid classes except that of the DGDG decreased. The PG was the lipid class which shows the large variation of fatty acid composition. No significant changes were found either for TL, PL, SL or MDA concentrations in shoots of Al-treated plants. While PE levels did not show significant change, PI and PG increased and PC decreased. However, the Al caused 87% decrease in the GL levels. The MGDG and DGDG decreased to 19- and 8-fold, respectively. The deleterious effects of Al on polar lipids could be caused by a direct intervention of Al on plasma membrane and/or alteration of cell metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号