首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2019年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In the mid-western Himalaya (altitude 1350 m, rainfall 1100 mm), multipurpose trees found as escapees in agricultural fields or naturally growing in the forests, play an important role in providing fuel, fooder and small timber to the farmers. Shoot elogation, and tree architecture of 4 year old trees of Grewia optiva, Robinia pseudoacacia and Celtis australis (early successionals), and Quercus leucotrichophora, Q. glauca and Ilex odorata (late successionals), were analyzed. All the late successional species showed a proleptic type of bud and branch production, while the early successional trees made growth through syllepsis. The shoot elongation differed significantly (P <0.05) with the crown position, and ranged from 11 to 30 cm in different species. Early successional species tended to maintain a comparatively narrow crown and showed a significantly (P <0.05) higher ramification ratio, and multilayered canopy. The late successionals, in contrast, showed a wide crown with monolayered canopy, adapted to the weak light intensity. There was only one flush of leaves in Q. leucotrichophora and Q. glauca while in the rest of the species there were two distinct flush periods. The results are important for the management of agroforestry trees.  相似文献   
2.
In the recent past, various groups have proposed diverse biocompatible methods for the synthesis of metal nanoparticles (NPs). Besides culture biomass, culture supernatants (CS) are increasingly being explored for the synthesis of NPs; however, with the ever-increasing exploration of various CS in the biofabrication of NPs, it is equally important to explore the potential of various culture media (CMs) in the synthesis of metal NPs. Considering these aspects, in the present investigation, we explore the possible applicability of various CMs in the biofabrication of metal NPs. The synthesis of NPs was primarily followed by UV/VIS spectroscopy, and, thereafter, the NPs were characterized by various physiochemical techniques, including EM, EDX, FT_IR, X-ray diffraction, and DLS measurements, and finally, their anticancer potentialities were investigated against breast cancer. In addition, the NPs were examined in conjunction with artemisinin for therapeutic benefits against aggressive and highly metastatic MDA-MB-231 breast cancer cells. Cumulatively, the results of the present study collated the potentials of various bacterial CMs in the biofabrication of metal NPs and ascertained the efficacy of the as-synthesized silver nanoparticles, especially the combinatorial entity as intriguing breast cancer therapeutics. The data of the present study plausibly assist in advancing the therapeutic applicability of the combinatorial amalgam against aggressive and highly metastatic MDA-MB-231 breast cancer cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号