首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2008年   1篇
  2007年   2篇
  2004年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   
3.
4.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   
5.

Background  

Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD.  相似文献   
6.
7.
The ability of seedlings to tolerate temperature extremes is important in determining the distribution of perennial plants in the arid south-western USA, and the manner in which elevated CO2 impacts the ability of plants to tolerate high temperatures is relatively unknown. Whereas the effects of chronic high temperature (30–38°C) and elevated CO2 are comparatively well understood, little research has assessed plant performance in elevated CO2 during extreme (> 45 °C) temperature events. We exposed three species of Yucca to 360 and 700 μmol CO2 mol–1 for 8 months, then 9 d of high temperature (up to 53 °C) to evaluate the impacts of elevated CO2 on the potential for photosynthetic function during external high temperature. Seedlings of a coastal C3 species (Yucca whipplei), a desert C3 species (Yucca brevifolia), and a desert CAM species (Yucca schidigera), were used to test for differences among functional groups. In general, Yuccas exposed to elevated CO2 showed decreases in carboxylation efficiency as compared with plants grown at ambient before the initiation of high temperature. The coastal species (Y. whipplei) showed significant reductions (33%) in CO2 saturated maximum assimilation rate (Amax), but the desert species (Y. brevifolia and Y. schidigera) showed no such reductions in Amax. Stomatal conductance was lower in elevated CO2 as compared with ambient throughout the temperature event; however, there were species-specific differences over time. Elevated CO2 enhanced photosynthesis in Y. whipplei at high temperatures for a period of 4 d, but not for Y. brevifolia or Y. schidigera. Elevated CO2 offset photoinhibition (measured as Fv/Fm) in Y. whipplei as compared with ambient CO2, depending on exposure time to high temperature. Stable Fv/Fm in Y. whipplei occurred in parallel with increases in the quantum yield of photosystem II (ΦPSII) at high temperatures in elevated CO2. The value of ΦPSII remained constant or decreased with increasing temperature in all other treatment and species combinations. This suggests that the reductions in Fv/Fm resulted from thermal energy dissipation in the pigment bed for Y. brevifolia and Y. schidigera. The greater efficiency of photosystem II in Y. whipplei helped to maintain photosynthetic function at high temperatures in elevated CO2. These patterns are in contrast to the hypothesis that high temperatures in elevated CO2 would increase the potential for photoinhibition. Our results suggest that elevated CO2 may offset high-temperature stress in coastal Yucca, but not in those species native to drier systems. Therefore, in the case of Y. whipplei, elevated CO2 may allow plants to survive extreme temperature events, potentially relaxing the effects of high temperature on the establishment in novel habitats.  相似文献   
8.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号