首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2007年   1篇
  2005年   4篇
  2004年   1篇
  1998年   4篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Genetic variation at the Major Histocompatibility Complex locus DQ beta was analyzed in 233 beluga whales (Delphinapterus leucas) from seven populations: St. Lawrence Estuary, eastern Beaufort Sea, eastern Chukchi Sea, western Hudson Bay, eastern Hudson Bay, southeastern Baffin Island, and High Arctic and in 12 narwhals (Monodon monoceros) sympatric with the High Arctic beluga population. Variation was assessed by amplification of the exon coding for the peptide binding region via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Five alleles were found across the beluga populations and one in the narwhal. Pairwise comparisons of these alleles showed a 5:1 ratio of nonsynonymous to synonymous substitutions per site leading to eight amino acid differences, five of which were nonconservative substitutions, centered around positions previously shown to be important for peptide binding. Although the amount of allelic variation is low when compared with terrestrial mammals, the nature of the substitutions in the peptide binding sites indicates an important role for the DQ beta locus in the cellular immune response of beluga whales. Comparisons of allele frequencies among populations show the High Arctic population to be different (P < or = .005) from the other beluga populations surveyed. In these other populations an allele, Dele-DQ beta*0101-2, was found in 98% of the animals, while in the High Arctic it was found in only 52% of the animals. Two other alleles were found at high frequencies in the High Arctic population, one being very similar to the single allele found in narwhal.   相似文献   
2.
We report the complete sequence of a paralogous copy of elongation factor-1 alpha (EF-1 alpha) in the honeybee, Apis mellifera (Hymenoptera: Apidae). This copy differs from a previously described copy in the positions of five introns and in 25% of the nucleotide sites in the coding regions. The existence of two paralogous copies of EF-1 alpha in Drosophila and Apis suggests that two copies of EF-1 alpha may be widespread in the holometabolous insect orders. To distinguish between a single, ancient gene duplication and parallel, independent fly and bee gene duplications, we performed a phylogenetic analysis of hexapod EF-1 alpha sequences. Unweighted parsimony analysis of nucleotide sequences suggests an ancient gene duplication event, whereas weighted parsimony analysis of nucleotides and unweighted parsimony analysis of amino acids suggests the contrary: that EF-1 alpha underwent parallel gene duplications in the Diptera and the Hymenoptera. The hypothesis of parallel gene duplication is supported both by congruence among nucleotide and amino acid data sets and by topology-dependent permutation tail probability (T-PTP) tests. The resulting tree topologies are also congruent with current views on the relationships among the holometabolous orders included in this study (Diptera, Hymenoptera, and Lepidoptera). More sequences, from diverse orders of holometabolous insects, will be needed to more accurately assess the historical patterns of gene duplication in EF-1 alpha.   相似文献   
3.
Hamam A  Lew RR 《Eukaryotic cell》2012,11(5):694-702
We characterized the electrical phenotypes of mutants with mutations in genes encoding calcium transporters-a mechanosensitive channel homolog (MscS), a Ca(2+)/H(+) exchange protein (cax), and Ca(2+)-ATPases (nca-1, nca-2, nca-3)-as well as those of double mutants (the nca-2 cax, nca-2 nca-3, and nca-3 cax mutants). The electrical characterization used dual impalements to obtain cable-corrected current-voltage measurements. Only two types of mutants (the MscS mutant; the nca-2 mutant and nca-2-containing double mutants) exhibited lower resting potentials. For the nca-2 mutant, on the basis of unchanged conductance and cyanide-induced depolarization of the potential, the cause is attenuated H(+)-ATPase activity. The growth of the nca-2 mutant-containing strains was inhibited by elevated extracellular Ca(2+) levels, indicative of lesions in Ca(2+) homeostasis. However, the net Ca(2+) effluxes of the nca-2 mutant, measured noninvasively with a self-referencing Ca(2+)-selective microelectrode, were similar to those of the wild type. All of the mutants exhibited osmosensitivity similar to that of the wild type (the turgor of the nca-2 mutant was also similar to that of the wild type), suggesting that Ca(2+) signaling does not play a role in osmoregulation. The hyphal tip morphology and tip-localized mitochondria of the nca-2 mutant were similar to those of the wild type, even when the external [Ca(2+)] was elevated. Thus, although Ca(2+) homeostasis is perturbed in the nca-2 mutant (B. J. Bowman et al., Eukaryot. Cell 10:654-661, 2011), the phenotype does not extend to tip growth or to osmoregulation but is revealed by lower H(+)-ATPase activity.  相似文献   
4.
This study continues analysis from a companion paper on over 350,000 insured Swedish dogs up to 10 years of age contributing to more than one million dog-years at risk during 1995–2000. The age patterns for total and diagnostic mortality and for general causes of death (trauma, tumour, locomotor, heart and neurological) are presented for numerous breeds. Survival estimates at five, eight and 10 years of age are calculated. Survival to 10 years of age was 75% or more in Labrador and golden retrievers, miniature and toy poodles and miniature dachshunds and lowest in Irish wolfhounds (91% dead by 10 years). Multivariable analysis was used to estimate the relative risk for general and more specific causes of death between breeds accounting for gender and age effects, including two-way interactions. Older females had tumour as a designated cause of death more often than males in most breeds, but not in the Bernese mountain dog. Information presented in this and the companion paper inform our understanding of the population level burden of disease, and support decision-making at the population and individual level about health promotion efforts and treatment and prognosis of disease events.  相似文献   
5.
6.

Background  

Movement of cells, either as amoeboid individuals or in organised groups, is a key feature of organ formation. Both modes of migration occur during Drosophila embryonic gonad development, which therefore provides a paradigm for understanding the contribution of these processes to organ morphogenesis. Gonads of Drosophila are formed from three distinct cell types: primordial germ cells (PGCs), somatic gonadal precursors (SGPs), and in males, male-specific somatic gonadal precursors (msSGPs). These originate in distinct locations and migrate to associate in two intermingled clusters which then compact to form the spherical primitive gonads. PGC movements are well studied, but much less is known of the migratory events and other interactions undergone by their somatic partners. These appear to move in organised groups like, for example, lateral line cells in zebra fish or Drosophila ovarian border cells.  相似文献   
7.
8.

Background  

Calcineurin (CaN) is an important serine-threonine phosphatase (PP2B), which plays a crucial role in calcium-calmodulin mediated signal transduction events. Calcineurin has been implicated in pathogenesis of various diseases cardiac hypertrophy, diabetic neuropathy and Alzheimer's, however its role in neoplasia remains unclear.  相似文献   
9.
10.

Background

Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed.

Methodology/Principal Findings

We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d'') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30–60 Hz) and alpha (8–14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing.

Conclusions/Significance

We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号