首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  2024年   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  1999年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1946年   1篇
  1945年   1篇
  1943年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Powell  C. V. L.  Halcrow  K. 《Zoomorphology》1982,101(3):151-164
Summary The microstructure of the surface of thirteen marine littoral and two terrestrial isopods was investigated by scanning electron microscopy. A great diversity of surface ornamentation is present, including non-sensory microscales, pits, tubercles, and ridges, and sensory tricorns, pit organs, pores, papillae and setae. Microscales are common features of the integument surface; their shape and size are highly variable. Tricorns were not observed on the marine littoral isopods. Several hitherto undescribed structures were observed including spade-like projections from the tergite surface of Oniscus asellus, hair-like filaments associated with the microscales of Jaera and ridged conical protuberances on Edotea triloba and E. montosa. The possible function of certain surface microstructures is discussed.  相似文献   
2.
Summary The structure of the two integumental layers comprising the carapace of female D. magna was examined at several points through the molt cycle. The epicuticle and procuticle are simple in organisation; pore canals are absent but intracuticular fibres are present, forming complexes with invaginations of the epidermal plasma membrane similar to such complexes described in the literature for other arthropods. The epidermis consists almost entirely of cuticle-secreting cells. Secretion of the new cuticle begins when 50–67% of the instar has elapsed by which time the epidermal cells have increased in height and their nuclei have become more rounded. However, other presumed secretory phenomena observed viz. the formation of dense core vesicles by Golgi bodies, and the occurrence of these and coated vesicles near the apical plasma membrane are not restricted to any particular period during the molt cycle. This suggests that the mechanisms of cuticle secretion do not undergo marked changes in activity as they do in decapods; presumably this relative continuity is related to the much shorter molt cycle of cladocerans.The technical assistance of G.A. Bance, and the financial support provided by the National Research Council of Canada are gratefully acknowledged  相似文献   
3.
Vitamin D deficiency has traditionally been viewed as a metabolic bone disease by bioarchaeologists and considered primarily in terms of the development of specific musculoskeletal changes used for diagnosis in paleopathological research. These skeletal manifestations are usually interpreted as representing general ill‐health. Clinical research shows that vitamin D is also integral to a number of extra‐skeletal physiological processes including immunoregulation, blood pressure homeostasis, cell division, and programmed cell death. Vitamin D deficiency and sub‐clinical insufficiency are thought to be risk factors for infectious and autoimmune diseases, as well as certain cancers and cardiovascular diseases. Epidemiological work indicates that the skeletal manifestations of vitamin D deficiency represent the extreme end of a spectrum of morbidity associated with negative health outcomes, including increased risk for secondary tuberculosis. This article provides a review of clinical research on the extra‐skeletal roles of vitamin D and the pathological consequences of poor vitamin D status. Additionally, it presents an interpretive model for bioarchaeological analyses of rickets and osteomalacia for consideration of the whole‐body impact of poor vitamin D nutriture and possible comorbidities that may have affected the wider population. Am J Phys Anthropol 160:183–196, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
4.
A novel type of pore canal is described from the cuticle of three species of Gammarus. Each canal passes from the epidermis vertically through the endocuticle and exocuticle, and in the most distal layers of the latter is slightly expanded. Before entering the epicuticle the canal narrows, forming a neck the base of which is encircled by an electron-dense collar. Several tubular structures arise from the collar and pass distally into the reticular innermost regions of the epicuticle. Within the neck and just below its opening at the cuticle surface, a rod-like structure is inserted; this protrudes a short distance from the pore. Each pore canal is connected to many necks; the openings of the latter are aligned in rows over the surface, the openings and rows being about 0.15 and 1.0 μm apart, respectively. Changes in the pore and canal contents are visible and their significance is discussed.  相似文献   
5.
Galactose oxidase (GO) belongs to a class of proteins that self-catalyze assembly of their redox-active cofactors from active site amino acids. Generation of enzymatically active GO appears to require at least four sequential post-translational modifications: cleavage of a secretion signal sequence, copper-dependent cleavage of an N-terminal pro sequence, copper-dependent formation of a C228-Y272 thioether bond, and generation of the Y272 radical. The last two processes were investigated using a truncated protein (termed premat-GO) lacking the pro sequence and purified under copper-free conditions. Reactions of premat-GO with Cu(II) were investigated using optical, EPR, and resonance Raman spectroscopy, SDS-PAGE, and X-ray crystallography. Premat-GO reacted anaerobically with excess Cu(II) to efficiently form the thioether bond but not the Y272 radical. A potential C228-copper coordinated intermediate (lambda max = 406 nm) in the processing reaction, which had not yet formed the C228-Y272 cross-link, was identified from the absorption spectrum. A copper-thiolate protein complex, with copper coordinated to C228, H496, and H581, was also observed in a 3 min anaerobic soak by X-ray crystallography, whereas a 24 h soak revealed the C228-Y272 thioether bond. In solution, addition of oxygenated buffer to premat-GO preincubated with excess Cu(II) generated the Y272 radical state. On the basis of these data, a mechanism for the formation of the C228-Y272 bond and tyrosyl radical generation is proposed. The 406 nm complex is demonstrated to be a catalytically competent processing intermediate under anaerobic conditions. We propose a potential mechanism which is in common with aerobic processing by Cu(II) until the step at which the second electron acceptor is required.  相似文献   
6.
7.
The past two decades have seen a proliferation in bioarchaeological literature on the identification of scurvy, a disease caused by chronic vitamin C deficiency, in ancient human remains. This condition is one of the few nutritional deficiencies that can result in diagnostic osseous lesions. Scurvy is associated with low dietary diversity and its identification in human skeletal remains can provide important contextual information on subsistence strategy, resource allocation, and human-environmental interactions in past populations. A large and robust methodological body of work on the paleopathology of scurvy exists. However, the diagnostic criteria for this disease employed by bioarchaeologists have not always been uniform. Here we draw from previous research on the skeletal manifestations of scurvy in adult and juvenile human skeletal remains and propose a weighted diagnostic system for its identification that takes into account the pathophysiology of the disease, soft tissue anatomy, and clinical research. Using a sample of individuals from the prehistoric Atacama Desert in Northern Chile, we also provide a practical example of how diagnostic value might be assigned to skeletal lesions of the disease that have not been previously described in the literature.  相似文献   
8.
9.
Chemical procedures remove some of the outer 3 limiting membranes of 2 ciliate protozoa, Euplotes eurystomus and Tetrahymena pyriformis, and reveal sheets of microtubules in their ectoplasm for SEM study. This greatly enhances the analysis of the 3-dimensional geometry of these sheets, as is shown especially for E. eurystomus. In this organism, sheets of microtubules can readily be observed and described as they course through or around parts of th oral apparatus and other 3-dimensionally complex regions.  相似文献   
10.
In addition to immunodeficiency, human immunodeficiency virus type 1 (HIV-1) can cause cognitive impairment and dementia through direct infection of the brain. To investigate the adaptive process and timing of HIV-1 entry into the central nervous system, we carried out an extensive genetic characterization of variants amplified from different regions of the brain and determined their relatedness to those in lymphoid tissue. HIV-1 genomes infecting different regions of the brain of one study subject with HIV encephalitis (HIVE) had a mosaic structure, being assembled from different combinations of evolutionarily distinct lineages in p17(gag), pol, individual hypervariable regions of gp120 (V1/V2, V3, V4, and V5), and gp41/nef. Similar discordant phylogenetic relationships were observed between p17(gag) and V3 sequences of brain and lymphoid tissue from three other individuals with HIVE. The observation that different parts of the genome of HIV infecting a particular tissue can have different evolutionary histories necessarily limits the conclusions that can be drawn from previous studies of the compartmentalization of distinct HIV populations in different tissues, as these have been generally restricted to sequence comparisons of single subgenomic regions. The complexity of viral populations in the brain produced by recombination could provide a powerful adaptive mechanism for the spread of virus with new phenotypes, such as antiviral resistance or escape from cytotoxic T-cell recognition into existing tissue-adapted virus populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号