首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   37篇
  193篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   11篇
  2013年   5篇
  2012年   5篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   9篇
  2003年   15篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   3篇
  1990年   9篇
  1989年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有193条查询结果,搜索用时 0 毫秒
1.
2.
Anaerobiosis results in the selective synthesis of a particular set of polypeptides in the maize root including the two alcohol dehydrogenases (Sachs, M. M., Freeling, M., and Okimoto, R. (1980) Cell 20, 761-768), pyruvate decarboxylase (Wignarajah, K., and Greenway, H. (1976) New Phytol. 77, 575-584; Laszlo, A., and St. Lawrence, P. (1983) Mol. Gen. Genet. 192, 110-117), glucose phosphate isomerase (Kelley, P. M., and Freeling, M. (1984) J. Biol. Chem. 259, 673-677) and aldolase (Kelley, P. M., and Freeling, M. (1984) J. Biol. Chem. 259, 14180-14183). This report describes the identification and characterization of cDNA clones to five different mRNA species induced upon anaerobic shock. Immunoprecipitation of hybrid-selected translation polypeptides has determined the identity of the cDNA clone for fructose-1,6-diphosphate aldolase mRNA. Quantitative hybridization analysis of anaerobic mRNAs using the cDNA clones has shown that there is not a simultaneous accumulation of anaerobic mRNAs. Upon reintroduction of air, the anaerobic mRNAs disappear rapidly and at approximately the same rate. A translocation line that generates progeny that contain 1, 2, and 3 doses of the long arm of chromosome one (1L) allowed us to test for clustering of the anaerobic genes; two of the anaerobic genes tested do not reside with Adh 1 and Phi 1 on the long arm of chromosome 1.  相似文献   
3.
The genes for cellobiose utilization are normally cryptic in Escherichia coli. The cellobiose system was used as a model to understand the process by which silent genes are maintained in microbial populations. Previously reported was (1) the isolation of a mutant strain that expresses the cellobiose-utilization (Cel) genes and (2) that expression of those genes allows utilization of three beta- glucoside sugars: cellobiose, arbutin, and salicin. The Cel gene cluster has now been cloned from that mutant strain. In the course of locating the Cel genes within the cloned DNA segment, it was discovered that inactivation of the Cel-encoded hydrolase rendered the host strain sensitive to all three beta-glucosides as potent inhibitors. This sensitivity arises from the accumulation of the phosphorylated beta- glucosides. Because even the fully active genes conferred some degree of beta-glucoside sensitivity, the effects of cellobiose on a series of five Cel+ mutants of independent origin were investigated. Although each of those strains utilizes cellobiose as a sole carbon and energy source, cellobiose also acts as a potent inhibitor that reduces the growth rate on glycerol 2.5-16.5-fold. On the other hand, wild-type strains that cannot utilize cellobiose are not inhibited. The observation that the same compound can serve either as a nutrient or as an inhibitor suggests that, under most conditions in which cellobiose will be present together with other resources, there is a strong selective advantage to having the cryptic (Cel0) allele. In those environments in which cellobiose is the sole, or the best, resource, mutants that express the genes (Cel+) will have a strong selective advantage. It is suggested that temporal alternation between these two conditions is a major factor in the maintenance of these genes in E. coli populations. This alternation of environments and fitnesses was predicted by the model for cryptic-gene maintenance that was previously published.   相似文献   
4.
Maize Floral Development: New Genes and Old Mutants   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   
5.
The pattern of genome organization of Zea mays has been analyzed, and the relationship of maize to possible progenitor species assessed by DNADNA hybridization. Reassociation of 470 and 1,350 bp fragments of maize DNA to various C0t values demonstrates that the genome is composed of 3 major kinetic classes: highly repetitive, mid-repetitive, and unique. Mini-C0t curves of the repetitive sequences at short fragment length indicate that the highly repetitive sequence class is 20% of the genome and is present at an average reiteration frequency of 800,000 copies; the mid-repetitive sequence class is 40% of the genome and is present at an average reiteration frequency of 1,000 copies. Thermal denaturation studies show that the highly repetitive sequences are 12% divergent and mid-repetitive sequences are 6% divergent. Most of the genome is organized in two interspersion patterns. One, approximately one-third of the genome, is composed of unique sequences of average length 2,100 bp interspersed with mid-repetitive sequences; the other, also one-third of the genome, is mid-repetitive sequences interspersed with highly repetitive sequences. The repetitive sequences are 500 to 1,000 bp by electron microscopic measurement. The remaining third of the genome is unique sequences farther than 5,000 bp from a palindromic or repetitive sequence. Hybridization of maize DNA from Midwestern Dent to popcorn and related grasses indicates that both the unique and repetitive sequence elements have diverged. Teosinte and popcorn are approximately equally divergent from Midwestern Dent whereas Tripsacum is much more divergent. The divergence times calculated from the depression of Tm in heterologous duplexes indicate that the divergence within Zea mays and between maize and near relatives is at least an order of magnitude greater than expected. This high degree of divergence may reflect the pressures of domestication of maize.  相似文献   
6.
7.
Unraveling the knots in plant development.   总被引:17,自引:0,他引:17  
  相似文献   
8.
9.
Post-translational modifications (PTMs) of histones play an important role in many cellular processes, notably gene regulation. Using a combination of mass spectrometric and immunobiochemical approaches, we show that the PTM profile of histone H3 differs significantly among the various model organisms examined. Unicellular eukaryotes, such as Saccharomyces cerevisiae (yeast) and Tetrahymena thermophila (Tet), for example, contain more activation than silencing marks as compared with mammalian cells (mouse and human), which are generally enriched in PTMs more often associated with gene silencing. Close examination reveals that many of the better-known modified lysines (Lys) can be either methylated or acetylated and that the overall modification patterns become more complex from unicellular eukaryotes to mammals. Additionally, novel species-specific H3 PTMs from wild-type asynchronously grown cells are also detected by mass spectrometry. Our results suggest that some PTMs are more conserved than previously thought, including H3K9me1 and H4K20me2 in yeast and H3K27me1, -me2, and -me3 in Tet. On histone H4, methylation at Lys-20 showed a similar pattern as H3 methylation at Lys-9, with mammals containing more methylation than the unicellular organisms. Additionally, modification profiles of H4 acetylation were very similar among the organisms examined.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号