首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   49篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   7篇
  2016年   10篇
  2015年   16篇
  2014年   27篇
  2013年   36篇
  2012年   44篇
  2011年   53篇
  2010年   23篇
  2009年   21篇
  2008年   43篇
  2007年   39篇
  2006年   22篇
  2005年   30篇
  2004年   37篇
  2003年   32篇
  2002年   29篇
  2001年   20篇
  2000年   9篇
  1999年   15篇
  1998年   10篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   5篇
  1989年   5篇
  1988年   4篇
  1987年   7篇
  1986年   9篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1980年   13篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1976年   8篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   5篇
  1970年   2篇
排序方式: 共有714条查询结果,搜索用时 15 毫秒
1.
Proenkephalin encodes a group of small peptides with opiate-like activity, the endogenous opioids, known to function as neurohormones, neuromodulators, and neurotransmitters. Recently, we have demonstrated that in addition to its abundance in fetal brain tissue, proenkephalin is highly expressed in nondifferentiated mesodermal cells of developing fetuses. We identified the skeletal tissues, bone, and cartilage as major sites of proenkephalin expression. To examine the possibility that proenkephalin is involved in bone development we have studied the expression of this gene in bone-derived cells, its modulation by bone active hormones, and the effects of enkephalin-derived peptides on osteoblastic phenotype. Our studies revealed that osteoblastic cells synthesize high levels of proenkephalin mRNA which are translated, and the derived peptides are secreted. Reciprocal interrelationships between osteoblast maturation and proenkephalin expression were established. These results together with our observations demonstrating inhibitory effects of proenkephalin-derived peptides on osteoblastic alkaline phosphatase activity, strongly support the notion that proenkephalin is involved in bone development. A different direction of research by other investigators has established the capability of the opioid system in the periphery to participate in the control of pain. On the basis of these two lines of observation, we would like to present the following hypothesis: The potential of embryonic skeletal tissue to synthesize proenkephalin-derived peptides is retained in the adult in small defined undifferentiated cell populations. This potential is realized in certain situations requiring rapid growth, such as remodeling or fracture repair. We suggest that in these processes, similarly to the situation in the embryo, the undifferentiated dividing cells produce the endogenous opioids. In the adult these peptides may have a dual function, namely participating in the control of tissue regeneration and in the control of pain. © 1994 Wiley-Liss, Inc.  相似文献   
2.
Factors relating to photo-oxidative damage in tomatoes were investigated during maturation of the fruit and upon induction of sunscald. Superoxide dismutase (SOD) activity passed through a minimum at the mature-green and breaker stages of ripening and availability of zinc and copper did not appear to be a limiting factor in the synthesis of the enzyme. Iron levels were maximal and total carotenoid concentrations were lowest during the same mature-green and breaker stages of maturation, while chlorophyll was starting to decrease but was still present in large amounts. Peroxidase activity decreased steadily during ripening. Artificial induction of tolerance to photodynamic damage by controlled heat treatment was accompanied by an increase in SOD activity, while carotenoid levels and peroxidase activity did not change. These findings support the thesis that the previously reported susceptibility of tomatoes to photodynamic damage, i.e. sunscald, during the mature-green and breaker stages of maturation is related to enhanced formation of superoxide ions, at a time when chloroplast structure begins to break down. SOD, by scavenging the superoxide, appears to supplement the protective action of carotenoids against photo-oxidative injury.  相似文献   
3.
Summary A cloned human cDNA for cholinesterase (ChE) was used as a probe for in situ hybridization to spread lymphocyte chromosomes to map the structural human CHE genes to distinct chromosomal regions. The recent genetic linkage assignment of the CHE1 locus of the CHE gene to chromosome 3q was confirmed and further refined to 3q21-q26, close to the genes coding for transferrin (TF) and transferrin receptor (TFRC). The CHE1 allele localizes to a 3q region that is commonly mutated and then associated with abnormal megakaryocyte proliferation in acute myelodysplastic anomalies. In view of earlier findings that ChE inhibitors induce megakaryocytopoiesis in culture, this localization may indicate that ChEs are involved in regulating the differentiation of megakaryocytes. A second site for ChEcDNA hybridization was found on chromosome 16q11-q23, demonstrating that the CHE2 locus of the cholinesterase gene, which directs the production of the common C5 variant of serum ChE, also codes for a structural subunit of the enzyme and is localized on the same chromosome with the haptoglobin (HP) gene, both genes being found on the long arm of chromosome 16. The finding of two sites for ChEcDNA hybridization suggests that the two loci coding for human ChEs may include nonidentical sequences responsible for the biochemical differences between ChE variants.  相似文献   
4.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   
5.
1. Various hybridization approaches were employed to investigate structural and chromosomal interrelationships between the human cholinesterase genes CHE and ACHE encoding the polymorphic, closely related, and coordinately regulated enzymes having butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities. 2. Homologous cosmid recombination with a 190-base pair 5' fragment from BuChEcDNA resulted in the isolation of four overlapping cosmid clones, apparently derived from a single gene with several introns. The Cosmid CHEDNA included a 700-base pair fragment known to be expressed at the 3' end of BuChEcDNA from nervous system tumors and which has been mapped by in situ hybridization to the unique 3q26-ter position. In contrast, cosmid CHEDNA did not hybridize with full-length AChEcDNA, proving that the complete CHE gene does not include AChE-encoding sequences either in exons or in its introns. 3. The chromosomal origin of BuChE-encoding sequences was further examined by two unrelated gene mapping approaches. Filter hybridization with DNA from human/hamster hybrid cell lines revealed BuChEcDNA-hybridizing sequences only in cell lines including human chromosome 3. However, three BuChEcDNA-homologous sequences were observed at chromosomal positions 3q21, 3q26-ter, and 16q21 by a highly stringent in situ hybridization protocol, including washes at high temperature and low salt. 4. These findings stress the selectivity of cosmid recombination and chromosome blots, raise the possibility of individual differences in BuChEcDNA-hybridizing sequences, and present an example for a family highly similar proteins encoded by distinct, nonhomologous genes.  相似文献   
6.
1. A comparative study of calcium and bicarbonate in the urine was carried out on the subterranean mole rat Cryptomys hottenttus and the terrestrial vlei rat Otomys irroratus. 2. The two species were kept on two different diets; carrots, a high calcium diet (41 mg/ 100 kg) or potatoes, a low calcium diet (14 mg/ 100g). 3. The results show that the urine of the mole rat contained high values of calcium bicarbonate on either diet. 4. The urine of the vlei rat showed high values of calcium bicarbonate only when kept on the high calcium diet. 5. From these results we assume that in subterranean rodents excretion of calcium bicarbonate is an adaptive mechanism to unload CO2 without increasing its concentration in the hypercapnic environment.  相似文献   
7.
Summary Exposure of the mucosal side of toad(Bufo bufo) urinary bladder and frog(Rana ridibunda) skin to the polyene ionophore nystatin, resulted in stable preparations in which the apical resistance was negligible compared to the basolateral resistance. The preparations support passive K currents in both directions and an amiloride-insensitive Na current in the apicalserosal direction which is blocked by ouabain. The nystatintreated toad bladder was used to study the electrical properties of the basolateral membrane by means of current-voltage curves recorded transepithelially. The K current showed strong rectification at cellular potentials negative with respect to the interstitial space. The ouabain-sensitive current increased with membrane voltage at negative voltages but saturated above+20 mV.  相似文献   
8.
We have performed a deletion and mutational analysis of the catalytic ribonuclease (RNase) P RNA subunit from the extreme thermophilic eubacterium Thermus thermophilus HB8. Catalytic activity was reduced 600-fold when the terminal helix, connecting the 5' and 3' ends of the molecule, was destroyed by deleting 15 nucleotides from the 3' end. In comparison, the removal of a large portion (94 nucleotides, about one quarter of the RNA) of the upper loop region impaired function only to a relatively moderate extent (400-fold reduction in activity). The terminal helix appears to be crucial for the proper folding of RNase P RNA, possibly by orientating the adjacent universally conserved pseudoknot structure. The region containing the lower half of the pseudoknot structure was shown to be a key element for enzyme function, as was the region of nucleotides 328-335. Deleting a conserved hairpin (nucleotides 304-327) adjacent to this region and replacing the hairpin by a tetranucleotide sequence or a single cytidine reduced catalytic activity only 6-fold, whereas a simultaneous mutation of the five highly conserved nucleotides in the region of nucleotides 328-335 reduced catalytic activity by > 10(5)-fold. The two strictly conserved adenines 244 and 245 (nucleotides 248/249 in Escherichia coli RNase P RNA) were not as essential for enzyme function as suggested by previous data. However, additional disruption of two helical segments (nucleotides 235-242) adjacent to nucleotides 244 and 245 reduced activity by > 10(4)-fold, supporting the notion that nucleotides in this region are also part of the active core structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
Gel retardation analysis of E. coli M1 RNA-tRNA complexes.   总被引:5,自引:0,他引:5       下载免费PDF全文
We have analyzed complexes between tRNA and E. coli M1 RNA by electrophoresis in non-denaturing polyacrylamide gels. The RNA subunit of E. coli RNase P formed a specific complex with mature tRNA molecules. A derivative of the tRNA(Gly), endowed with the intron of yeast tRNA(ile) (60 nt), was employed to improve separation of complexed and unbound M1 RNA. Binding assays with tRNA(Gly) and intron-tRNA(Gly) as well as analysis of intron-tRNA/M1 RNA complexes on denaturing gels showed that one tRNA is bound per molecule of M1 RNA. A tRNA carrying a truncation as small as the 5'-nucleotide had a strongly reduced affinity to M1 RNA and was also a weak competitor in the cleavage reaction, suggesting that nucleotide +1 is a major determinant of tRNA recognition and that the thermodynamically stable tRNA-M1 RNA complex is relevant for enzyme function. Binding was shown to be dependent on the M1 RNA concentration in a cooperative fashion. Only a fraction of M1 RNAs (50-60%) readily formed a complex with intron-tRNA(Gly), indicating that distinct conformational subpopulations of M1 RNA may exist. Formation of the M1 RNA-tRNA(Gly), complex was very similar at 100 mM Mg++ and Ca++, corroborating earlier data that Ca++ is competent in promoting M1 RNA folding and tRNA binding. Determination of apparent equilibrium constants (app Kd) for tRNA(Gly) as a function of the Mg++ concentration supports an uptake of at least two additional Mg++ ions upon complex formation. At 20-30 mM Mg++, highest cleavage rates but strongly reduced complex formation were observed. This indicates that tight binding of the tRNA to the catalytic RNA at higher magnesium concentrations retards product release and therefore substrate turnover.  相似文献   
10.
Two species of spiny mice of the genus Acomys—the golden spiny A. russaturs and the common spiny A. cuhirinus—are syrnpatnc in the and and hot parts of the Rift Valley in Israel. The coexistence of these two species is due to exclusion of A. russatus mice by A. cuhirinus mice from nocturnal activity. The aim of this research was to study if odor signals released by A. cahirinus mice can play a role in the exclusion of A. russatus mice. A. russatus mice with an implanted transmitter recording body temperature (Tb) were kept alone in a metabolic chamber under constant conditions of ambient temperature (27°C) and photoperiod (12 h light: 12 h dark). After 5 days of recording, chemical signals from an A. cuhirinus mouse were added through the air tube going into the metabolic chamber of the A. russatus mice. This treatment caused a shift of ∼ 2 h inTb daily rhythm of the naive tested A. russutus mice, whereas no shift was observed in A. russatus mice that had been kept in the same room with the A. cahirinus mouse before measurements. These results strongly support the idea that chemical signals released by A. cahirinus mice can entrain the Tb rhythms of A. russatus mice. Therefore, it may be assumed that the exclusion of A. russatus mice from nocturnal activity by A. cuhirinus mice could be achieved through the odor released by the latter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号