首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   2篇
  57篇
  2022年   1篇
  2021年   2篇
  2019年   5篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
1.
We have analyzed a total of 12 different global and local multiple protein-sequence alignment methods. The purpose of this study is to evaluate each method's ability to correctly identify the ordered series of motifs found among all members of a given protein family. Four phylogenetically distributed sets of sequences from the hemoglobin, kinase, aspartic acid protease, and ribonuclease H protein families were used to test the methods. The performance of all 12 methods was affected by (1) the number of sequences in the test sets, (2) the degree of similarity among the sequences, and (3) the number of indels required to produce a multiple alignment. Global methods generally performed better than local methods in the detection of motif patterns.   相似文献   
2.
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi‐parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre‐breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.  相似文献   
3.
The African Black Oystercatcher Haematopus moquini is a charismatic, southern African near-endemic, wader species, that is often seen as a flagship species for coastal bird conservation, as it was recently down-listed regionally to Least Concern on the IUCN Red List of Threatened Species. To celebrate this rare conservation success story, BirdLife South Africa named it the 2018 Bird of the Year and ran a year-long programme in collaboration with the Nature’s Valley Trust highlighting aspects of the species’ biology, current threats, and conservation success. We used data collected by the Southern African Bird Atlas Project (SABAP1 and SABAP2) to examine changes in the species’ range and relative abundance, both in the records between the two projects, as well as trends within the SABAP2 sampling period (2008–2017). This case study enabled us to assess whether such metrics can accurately reflect abundance and distributional changes in a species. We found increases in the reported range and the reporting rates between the two Atlas projects, and that the SABAP2 reporting rate was stable. Regionally, across four coastal categories, the reporting rate was lowest in KwaZulu-Natal, though this region also showed an increase in the probability of reporting during the SABAP2 period. While corroborating the recent change in the species’ conservation status, we also provide good evidence that the long-term SABAP data can be used successfully to assess population trends and range changes over time.  相似文献   
4.
5.
We surveyed nine diallelic polymorphic sites on the Y chromosomes of 1,544 individuals from Africa, Asia, Europe, Oceania, and the New World. Phylogenetic analyses of these nine sites resulted in a tree for 10 distinct Y haplotypes with a coalescence time of approximately 150,000 years. The 10 haplotypes were unevenly distributed among human populations: 5 were restricted to a particular continent, 2 were shared between Africa and Europe, 1 was present only in the Old World, and 2 were found in all geographic regions surveyed. The ancestral haplotype was limited to African populations. Random permutation procedures revealed statistically significant patterns of geographical structuring of this paternal genetic variation. The results of a nested cladistic analysis indicated that these geographical associations arose through a combination of processes, including restricted, recurrent gene flow (isolation by distance) and range expansions. We inferred that one of the oldest events in the nested cladistic analysis was a range expansion out of Africa which resulted in the complete replacement of Y chromosomes throughout the Old World, a finding consistent with many versions of the Out of Africa Replacement Model. A second and more recent range expansion brought Asian Y chromosomes back to Africa without replacing the indigenous African male gene pool. Thus, the previously observed high levels of Y chromosomal genetic diversity in Africa may be due in part to bidirectional population movements. Finally, a comparison of our results with those from nested cladistic analyses of human mtDNA and beta-globin data revealed different patterns of inferences for males and females concerning the relative roles of population history (range expansions) and population structure (recurrent gene flow), thereby adding a new sex-specific component to models of human evolution.   相似文献   
6.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   
7.
8.

Introduction

Metritis is an uterine pathology that causes economic losses for the dairy industry. It is associated with lower reproductive efficiency, increased culling rates, decreased milk production and increased veterinary costs.

Objectives

To gain a more detailed view of the urine metabolome and to detect metabolite signature in cows with metritis. In addition, we aimed to identify early metabolites which can help to detect cows at risk to develop metritis in the future.

Methods

We used nuclear magnetic resonance spectroscopy starting at 8 and 4 weeks prior to the expected day of parturition, during the week of diagnosis of metritis, and at 4 and 8 weeks after diagnosis of metritis in Holstein dairy cows.

Results

At 8 weeks before parturition, pre-metritic cows had a total of 30 altered metabolites. Interestingly, 28 of them increased in urine when compared with control cows (P?<?0.05). At 4 weeks before parturition, 34 metabolites were altered. At the week of diagnosis of metritis a total of 20 metabolites were altered (P?<?0.05). The alteration continued at 4 and 8 weeks after diagnosis.

Conclusions

The metabolic fingerprints in the urine of pre-metritic and metritic cows point toward excretion of multiple amino acids, tricarboxylic acid cycle metabolites and monosaccharides. Combination of galactose, leucine, lysine and panthotenate at 8 weeks before parturition might serve as predictive biomarkers for metritis.
  相似文献   
9.
10.
The African origin of hominins suggests that Taenia spp. in African carnivores are evolutionarily related to the human-infecting tapeworms Taenia solium, Taenia saginata and Taenia asiatica. Nevertheless, the hypothesis has not been verified through molecular phylogenetics of Taenia. This study aimed to perform phylogenetic comparisons between Taenia spp. from African hyenas and the congeneric human parasites. During 2010–2013, 233 adult specimens of Taenia spp. were collected from 11 spotted hyenas in Ethiopia. A screening based on short DNA sequences of the cytochrome c oxidase subunit 1 gene classified the samples into four mitochondrial lineages designated as I–IV. DNA profiles of nuclear genes for DNA polymerase delta (pold) and phosphoenolpyruvate carboxykinase (pepck) showed that lineages II and III can be assigned as two independent species. Common haplotypes of pold and pepck were frequently found in lineages I and IV, suggesting that they constitute a single species. Morphological observations suggested that lineage II is Taenia crocutae, but the other lineages were morphologically inconsistent with known species, suggesting the involvement of two new species. A phylogenetic tree of Taenia spp. was reconstructed by the maximum likelihood method using all protein-coding genes of their mitochondrial genomes. The tree clearly demonstrated that T. crocutae is sister to T. saginata and T. asiatica, whereas T. solium was confirmed to be sister to the brown bear tapeworm, Taenia arctos. The tree also suggested that T. solium and T. arctos are related to two species of Taenia in hyenas, corresponding to lineages I + IV and III. These results may partially support the African origin of human-infecting Taenia spp., but there remains a possibility that host switching of Taenia to hominins was not confined to Africa. Additional taxa from African carnivores are needed for further testing of the “Out of Africa” hypothesis of Taenia in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号