全文获取类型
收费全文 | 198篇 |
免费 | 20篇 |
专业分类
218篇 |
出版年
2023年 | 2篇 |
2021年 | 4篇 |
2020年 | 3篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 7篇 |
2013年 | 13篇 |
2012年 | 10篇 |
2011年 | 9篇 |
2010年 | 8篇 |
2009年 | 2篇 |
2008年 | 12篇 |
2007年 | 9篇 |
2006年 | 9篇 |
2005年 | 5篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2002年 | 8篇 |
2001年 | 7篇 |
2000年 | 9篇 |
1999年 | 9篇 |
1996年 | 2篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 7篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 5篇 |
1972年 | 2篇 |
1970年 | 1篇 |
1969年 | 4篇 |
1965年 | 2篇 |
1953年 | 1篇 |
1951年 | 2篇 |
1946年 | 1篇 |
1926年 | 1篇 |
排序方式: 共有218条查询结果,搜索用时 0 毫秒
1.
Impaired intervertebral disc formation in the absence of Jun 总被引:11,自引:0,他引:11
Behrens A Haigh J Mechta-Grigoriou F Nagy A Yaniv M Wagner EF 《Development (Cambridge, England)》2003,130(1):103-109
2.
The hitch-hiking effect of a favourable gene 总被引:70,自引:0,他引:70
3.
Martin P. Boland Claire R. Hatty Frances Separovic Andrew F. Hill Deborah J. Tew Kevin J. Barnham Cathryn L. Haigh Michael James Colin L. Masters Steven J. Collins 《The Journal of biological chemistry》2010,285(42):32282-32292
Although the N terminus of the prion protein (PrPC) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23–110) and N2 (23–89) fragments derived from constitutive processing of PrPC and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed. 相似文献
4.
Laurel L. Ballantyne Yuan Yan Sin Tim St. Amand Joshua Si Steven Goossens Lieven Haenebalcke Jody J. Haigh Lianna Kyriakopoulou Andreas Schulze Colin D. Funk 《PloS one》2015,10(5)
Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation) either failed to extend lifespan (ornithine) or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug). A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter) rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies. 相似文献
5.
6.
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy 总被引:5,自引:0,他引:5
Twig G Elorza A Molina AJ Mohamed H Wikstrom JD Walzer G Stiles L Haigh SE Katz S Las G Alroy J Wu M Py BF Yuan J Deeney JT Corkey BE Shirihai OS 《The EMBO journal》2008,27(2):433-446
Accumulation of depolarized mitochondria within beta-cells has been associated with oxidative damage and development of diabetes. To determine the source and fate of depolarized mitochondria, individual mitochondria were photolabeled and tracked through fusion and fission. Mitochondria were found to go through frequent cycles of fusion and fission in a 'kiss and run' pattern. Fission events often generated uneven daughter units: one daughter exhibited increased membrane potential (delta psi(m)) and a high probability of subsequent fusion, while the other had decreased membrane potential and a reduced probability for a fusion event. Together, this pattern generated a subpopulation of non-fusing mitochondria that were found to have reduced delta psi(m) and decreased levels of the fusion protein OPA1. Inhibition of the fission machinery through DRP1(K38A) or FIS1 RNAi decreased mitochondrial autophagy and resulted in the accumulation of oxidized mitochondrial proteins, reduced respiration and impaired insulin secretion. Pulse chase and arrest of autophagy at the pre-proteolysis stage reveal that before autophagy mitochondria lose delta psi(m) and OPA1, and that overexpression of OPA1 decreases mitochondrial autophagy. Together, these findings suggest that fission followed by selective fusion segregates dysfunctional mitochondria and permits their removal by autophagy. 相似文献
7.
8.
Davina Tondeleir Benjamin Drogat Karolina Slowicka Karima Bakkali Sonia Bartunkova Steven Goossens Jody J. Haigh Christophe Ampe 《PloS one》2013,8(6)
The functions of actin family members during development are poorly understood. To investigate the role of beta-actin in mammalian development, a beta-actin knockout mouse model was used. Homozygous beta-actin knockout mice are lethal at embryonic day (E)10.5. At E10.25 beta-actin knockout embryos are growth retarded and display a pale yolk sac and embryo proper that is suggestive of altered erythropoiesis. Here we report that lack of beta-actin resulted in a block of primitive and definitive hematopoietic development. Reduced levels of Gata2, were associated to this phenotype. Consistently, ChIP analysis revealed multiple binding sites for beta-actin in the Gata2 promoter. Gata2 mRNA levels were almost completely rescued by expression of an erythroid lineage restricted ROSA26-promotor based GATA2 transgene. As a result, erythroid differentiation was restored and the knockout embryos showed significant improvement in yolk sac and embryo vascularization. These results provide new molecular insights for a novel function of beta-actin in erythropoiesis by modulating the expression levels of Gata2 in vivo. 相似文献
9.
Pedro Barbacena Marie Ouarn Jody J. Haigh Francisca F. Vasconcelos Anna Pezzarossa Claudio A. Franco 《Genesis (New York, N.Y. : 2000)》2019,57(6)
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front–rear polarity axis for directional movement. Although front–rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live‐imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front–rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus‐to‐Golgi axis to each cell, which functions as a readout for cell front–rear polarity. As a proof‐of‐principle, we validated the efficiency of the GNrep line using an endothelial‐specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large‐scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front–rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease. 相似文献
10.
Reissbrodt R Rienaecker I Romanova JM Freestone PP Haigh RD Lyte M Tschäpe H Williams PH 《Applied and environmental microbiology》2002,68(10):4788-4794
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the sigma(s) subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans. 相似文献