首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   85篇
  2024年   1篇
  2023年   5篇
  2022年   13篇
  2021年   26篇
  2020年   17篇
  2019年   27篇
  2018年   43篇
  2017年   30篇
  2016年   49篇
  2015年   75篇
  2014年   92篇
  2013年   100篇
  2012年   125篇
  2011年   102篇
  2010年   74篇
  2009年   58篇
  2008年   67篇
  2007年   73篇
  2006年   55篇
  2005年   63篇
  2004年   63篇
  2003年   56篇
  2002年   35篇
  2001年   9篇
  2000年   6篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1982年   1篇
  1981年   1篇
  1967年   1篇
排序方式: 共有1300条查询结果,搜索用时 0 毫秒
1.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   
2.
Typing of Nontypable Staphylococci by Lysogeny   总被引:1,自引:0,他引:1       下载免费PDF全文
Strains of coagulase-positive staphylococci which were nontypable with the routine typing set of phages could be typed by lysogeny with phage-propagating strains as indicators and with ultraviolet induction. About 10% of the strains could be typed without induction. About 36% of them could be typed by this method when ultraviolet irradiation was used as an inducing agent. The phage groups from which the majority of the nontypable staphylococci originated were easily identified by this method of typing.  相似文献   
3.
Summary A novel two enzyme system of fructosyltransferase and glucose oxidase to enhance the content of the net fructo—oligosaccharide (FOS) fractions in the industrial production of FOS syrup from sucrose was devised. The net FOS content in the commercial FOS syrup has been limited only to 55–60 % due to the accumulation of glucose which acts as a feedback inhibitor of the fructosyltransferase. By supplementing glucose oxidase to the conventional FOS reaction system, we could convert the glucose to gluconic acid readily separable from neutral sugars by simple ion exchange operation in the next step. The simultaneous removal of glucose was proved effective in proceeding the reaction by fructosyltransferase further by relieving the product inhibition caused by glucose. By this way, we could raise the net FOS content as high as 90 %.  相似文献   
4.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   
5.
The organization of 14 exons covering 97% of the cDNA sequence of human cerebroside sulfate activator protein precursor has been determined from two overlapping EMBL-4 human genomic clones extending over 17kb. All exons and exon/intron splice junctions and five introns were sequenced. Exon 8 consists of only 9 bp and is involved in alternative splicing which generates three different mRNAs of cerebroside sulfate activator precursor.  相似文献   
6.
7.
Understanding how defects in mechanotransduction affect cell‐to‐cell variability will add to the fundamental knowledge of human pluripotent stem cell (hPSC) culture, and may suggest new approaches for achieving a robust, reproducible, and scalable process that result in consistent product quality and yields. Here, the current state of the understanding of the fundamental mechanisms that govern the growth kinetics of hPSCs between static and dynamic cultures is reviewed, the factors causing fluctuations are identified, and culture strategies that might eliminate or minimize the occurrence of cell‐to‐cell variability arising from these fluctuations are discussed. The existing challenges in the development of hPSC expansion methods for enabling the transition from process development to large‐scale production are addressed, a mandatory step for industrial and clinical applications of hPSCs.  相似文献   
8.
A simple and efficient tool to isolate epithelial cells from bacteria-contaminated samples has been developed using two different microparticles functionalized with chemical molecules. The epithelial cells could be captured simply by biocompatible anchors for membranes (BAM), consisting of poly(ethylene glycol) functionalized with oleyl-chain-conjugated NHS (N-hydroxysuccinimide) on glass microparticles, whereas bacteria were adsorbed on 3-aminopropyltrimethoxysilane (ATPS)-functionalized magnetic microparticles. In the case of samples highly contaminated with bacteria, epithelial cells were not isolated successfully by both of the single BAM- and antibody-functionalized microparticles. Therefore, serial isolation steps of these two different chemical functionalized microparticles were introduced. The concentration of bacteria was decreased dramatically by using APTS-functionalized magnetic particles prior to the isolation of epithelial cells by BAM microparticles. With these serial processes, successful isolation of epithelial cells was achieved from bacteria-contaminated epithelial samples. The applicability of this method was verified with bacteria-contaminated intestinal samples biopsied from a BALB/C mouse for primary cell cultivation.  相似文献   
9.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号