全文获取类型
收费全文 | 1222篇 |
免费 | 38篇 |
国内免费 | 6篇 |
专业分类
1266篇 |
出版年
2024年 | 4篇 |
2023年 | 4篇 |
2022年 | 15篇 |
2021年 | 26篇 |
2020年 | 16篇 |
2019年 | 23篇 |
2018年 | 42篇 |
2017年 | 27篇 |
2016年 | 43篇 |
2015年 | 69篇 |
2014年 | 93篇 |
2013年 | 90篇 |
2012年 | 126篇 |
2011年 | 108篇 |
2010年 | 74篇 |
2009年 | 63篇 |
2008年 | 58篇 |
2007年 | 62篇 |
2006年 | 44篇 |
2005年 | 57篇 |
2004年 | 52篇 |
2003年 | 55篇 |
2002年 | 30篇 |
2001年 | 11篇 |
2000年 | 13篇 |
1999年 | 10篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1992年 | 4篇 |
1991年 | 5篇 |
1990年 | 3篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 1篇 |
1973年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有1266条查询结果,搜索用时 0 毫秒
1.
2.
Ri Wei Xia Xue Mei Yin Wei Yun Qin Guo Qiang Zhu Sheng Long Wu Wen Bin Bao 《Genes & genomics.》2017,39(11):1285-1295
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies. 相似文献
3.
4.
Hae Jin Jeong Sung Yeon Lee Nam Seon Kang Yeong Du Yoo An Suk Lim Moo Joon Lee Hyung Seop Kim Wonho Yih Hiroshi Yamashita Todd C. LaJeunesse 《The Journal of eukaryotic microbiology》2014,61(1):75-94
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. 相似文献
5.
Ataxia-telangiectasia mutated (ATM) is a Ser/Thr protein kinase that plays a critical role in DNA damage-induced signaling and initiation of cell cycle checkpoint signaling in response to DNA-damaging agents such as ionizing radiation. We have previously reported the ATM protein loss by immunohistochemistry (IHC) in 16% of human gastric cancer (GC) tissue. We hypothesized that ATM gene intron mutations targeted by microsatellite instability (MSI) cause ATM protein loss in a subset of GC. We studied mononucleotide mutations at the intron of ATM gene, ATM IHC and MSI in GC. Ten human gastric cancer cell lines were studied for the ATM gene mutation at introns, RT-PCR, direct sequencing, and immunohistochemistry. GC tissues of 839 patients were analyzed for MSI and ATM IHC. Among them, 604 cases were analyzed for the ATM mutations at introns preceding exon 6, exon 10 and exon 20. Two human GC cell lines (SNU-1 and -638) showed ATM intron mutations, deletion in RT-PCR and direct sequencing, and ATM protein loss by IHC. The frequencies of ATM mutation, MSI, and ATM protein loss were 12.9% (78/604), 9.2% (81/882) and 15.2% (134/839), respectively. Analysis of associations among MSI, ATM gene mutation, and ATM protein loss revealed highly co-existing ATM gene alterations and MSI. ATM intron mutation and ATM protein loss were detected in 69.3% (52/75) and 53.3% (40/75) of MSI positive GC. MSI positivity and ATM protein loss were present in 68.4% (52/76) and 48.7% (37/76) of GC with ATM intron mutation. ATM mutation and ATM protein loss had characteristics of old age, distal location of tumor, large tumor size, and histologic intestinal type. Our study might be interpreted as that ATM gene mutation at intron might be targeted by MSI and lead to ATM protein loss in a selected group of GC. 相似文献
6.
7.
Melanin is the major factor that determines skin color and protects from ultraviolet radiation. In present study we evaluated the anti‐melanogenesis effect of acetazolamide (ACZ) using four different approaches: enzyme kinetic, in vitro, in vivo and in silico. ACZ demonstrated significant inhibitory activity (IC50 7.895 ± 0.24 μm ) against tyrosinase as compared to the standard drug kojic acid (IC50 16.84 ± 0.64 μm ) and kinetic analyses showed that ACZ is a non‐competitive inhibitor without cytotoxic effect. In in vitro experiments, A375 human melanoma cells were treated with 20 or 40 μm of ACZ with or without 50 μm of l ‐DOPA. Western blot results showed that ACZ significantly (P < 0.05) decreased the expression level of tyrosinase at 40 μm . Zebrafish embryos were treated with 10, 20 or 40 μm of ACZ and of positive control kojic acid. At 72 h of treatment with ACZ and kojic acid, ACZ significantly (P < 0.001) decreased the embryos pigmentation to 40.8% of untreated embryos at the dose of 40 μm of ACZ while kojic acid decreased only 25.0% of pigmentation at the same dose of kojic acid. In silico docking were performed against tyrosinase using PyRx tool. Docking studies suggested that His244, Asn260 and His85 are the major interacting residues in the binding site of the protein. In conclusion, our results suggest that ACZ is a good candidate for the inhibition of melanin and it could be used as a lead for developing the drugs for hyperpigmentary disorders and skin whitening. 相似文献
8.
9.
Chul Hong Kim Eun Kyeong Lee Yeon Ja Choi Hye Jin An Hyeong Oh Jeong Daeui Park Byoung Chul Kim Byung Pal Yu Jong Bhak Hae Yung Chung 《Aging cell》2016,15(6):1074-1081
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects. 相似文献
10.
Fungal species are a very important source of many different enzymes, and the ability of fungi to transform steroids has been used for several decades in the production of compounds with a sterane skeleton. Here, we review the characterised and/or purified enzymes for steroid transformations, dividing them into two groups: (i) enzymes of the ergosterol biosynthetic pathway, including data for, e.g. ERG11 (14α-demethylase), ERG6 (C-24 methyltransferase), ERG5 (C-22 desaturase) and ERG4 (C-24 reductase); and (ii) the other steroid-transforming enzymes, including different hydroxylases (7α-, 11α-, 11β-, 14α-hydroxylase), oxidoreductases (5α-reductase, 3β-hydroxysteroid dehydrogenase/isomerase, 17β-hydroxysteroid dehydrogenase, C-1/C-2 dehydrogenase) and C-17-C-20 lyase. The substrate specificities of these enzymes, their cellular localisation, their association with protein super-families, and their potential applications are discussed. Article from a special issue on steroids and microorganisms. 相似文献