首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 343 毫秒
1
1.
hCAT-3 (human cationic amino acid transporter type three) was investigated with both the two-electrode voltage clamp method and tracer experiments. Oocytes expressing hCAT-3 displayed less negative membrane potentials and larger voltage-dependent currents than native or water-injected oocytes did. Ion substitution experiments in hCAT-3-expressing oocytes revealed a large conductance for Na+ and K+. In the presence of L-Arg, voltage-dependent inward and outward currents were observed. At symmetrical (inside/outside) concentrations of L-Arg, the conductance of the transporter increased monoexponentially with the L-Arg concentrations; the calculated Vmax and KM values amounted to 8.3 microS and 0.36 mM, respectively. The time constants of influx and efflux of [3H]L-Arg, at symmetrically inside/outside L-Arg concentrations (1 mM), amounted to 79 and 77 min, respectively. The flux data and electrophysiological experiments suggest that the transport of L-Arg through hCAT-3 is symmetric, when the steady state of L-Arg flux has been reached. It is concluded that hCAT-3 is a passive transport system that conducts monovalent cations including L-Arg. The particular role of hCAT-3 in the diverse tissues remains to be elucidated.  相似文献   
2.
Membrane potential and currents were investigated with thetwo-electrode voltage-clamp technique in Xenopus laevisoocytes expressing hCAT-2A or hCAT-2B, the splice variants of the human cationic amino acid transporter hCAT-2. Both hCAT-2A- andhCAT-2B-expressing oocytes exhibited a negative extracellularL-arginine concentration ([L-Arg]o)-sensitive membrane potential,additive to the K+ diffusion potential, when cells wereincubated in Leibovitz medium (containing 1.45 mM L-Arg and0.25 mM L-lysine). The two carrier proteins produced inwardand outward currents, which were dependent on the L-Arggradient and membrane potential. Ion substitution experiments showedthat the hCAT-induced currents were independent of externalNa+, K+, Ca2+, or Mg2+.The apparent Michaelis-Menten constant values at 60 mV, obtained fromplots of L-Arg-induced currents against[L-Arg]o, were 0.97 and 0.13 mM in oocytesexpressing hCAT-2A and hCAT-2B, respectively; maximal currentsamounted to 194 ± 8 and 84 ± 2 nA, respectively. Atsaturating [L-Arg]o, the current-voltagerelationships of hCAT-2A-expressing oocytes became steeper, yielding anadditional conductance up to 2 µS/oocyte, whereas those ofhCAT-2B-expressing oocytes were simply shifted to the right, resultingin voltage-independent difference currents. The distinctelectrochemical properties of the two isoforms of hCAT-2 are assumed tocontribute differentially to the membrane transport and the maintenanceof cationic amino acids in various tissues.

  相似文献   
3.
In most cells, cationic amino acids such as l-arginine, l-lysine, and l-ornithine are transported by cationic (CAT) and y+L (y+LAT) amino acid transporters. In human erythrocytes, the cysteine-modifying agent N-ethylmaleimide (NEM) has been shown to inhibit system y+ (most likely CAT-1), but not system y+L (Devés, R., Angelo, S., and Chávez, P. (1993) J. Physiol. 468, 753–766). We thus wondered if sensitivity to NEM distinguishes generally all CAT and y+LAT isoforms. Transport assays in Xenopus laevis oocytes established that indeed all human CATs (including the low affinity hCAT-2A), but neither y+LAT isoform, are inhibited by NEM. hCAT-2A inhibition was not due to reduced transporter expression in the plasma membrane, indicating that NEM reduces the intrinsic transporter activity. Individual mutation of each of the seven cysteine residues conserved in all CAT isoforms did not lead to NEM insensitivity of hCAT-2A. However, a cysteine-less mutant was no longer inhibited by NEM, suggesting that inhibition occurs through modification of more than one cysteine in hCAT-2A. Indeed, also the double mutant C33A/C273A was insensitive to NEM inhibition, whereas reintroduction of a cysteine at either position 33 or 273 in the cysteine-less mutant led to NEM sensitivity. We thus identified Cys-33 and Cys-273 in hCAT-2A as the targets of NEM inhibition. In addition, all proteins with Cys-33 mutations showed a pronounced reduction in transport activity, suggesting that, surprisingly, this residue, located in the cytoplasmic N terminus, is important for transporter function.  相似文献   
4.
5.
Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer’s or Parkinson’s disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply.  相似文献   
6.
Mammalian cationic amino acid transporters (CAT) differ in their substrate affinity and sensitivity to trans-stimulation. The apparent Km values for cationic amino acids and the sensitivity to trans-stimulation of CAT-1, -2B, and -3 are characteristic of system y+. In contrast, CAT-2A exhibits a 10-fold lower substrate affinity and is largely independent of substrate at the trans-side of the membrane. CAT-2A and -2B demonstrate such divergent transport properties, even though their amino acid sequences differ only in a stretch of 42 amino acids. Here, we identify two amino acid residues within this 42-amino acid domain of the human CAT-2A protein that are responsible for the apparent low affinity of both the extracellular and intracellular substrate-binding sites. These residues are located in the fourth intracellular loop, suggesting that they are not part of the translocation pathway. Rather, they may be responsible for the low affinity conformation of the substrate-binding sites. The sensitivity to trans-stimulation is not determined by the same amino acid residues as the substrate affinity and must involve a more complex interaction between individual amino acid residues. In addition to the 42-amino acid domain, the adjacent transmembrane domain X seems to be involved in this function.  相似文献   
7.
Activation of protein kinase C (PKC) downregulates the human cationic amino acid transporters hCAT-1 (SLC7A1) and hCAT-3 (SLC7A3) (Rotmann A, Strand D, Martiné U, Closs EI. J Biol Chem 279: 54185-54192, 2004; Rotmann A, Vekony N, Gassner D, Niegisch G, Strand D, Martine U, Closs EI. Biochem J 395: 117-123, 2006). However, others found that PKC increased arginine transport in various mammalian cell types, suggesting that the expression of different arginine transporters might be responsible for the opposite PKC effects. We thus investigated the consequence of PKC activation by phorbol-12-myristate-13-acetate (PMA) in various human cell lines expressing leucine-insensitive system y(+) [hCAT-1, hCAT-2B (SLC7A2), or hCAT-3] as well as leucine-sensitive system y(+)L [y(+)LAT1 (SLC7A7) or y(+)LAT2 (SLC7A6)] arginine transporters. PMA reduced system y(+) activity in all cell lines tested, independent of the hCAT isoform expressed, while mRNAs encoding the individual hCAT isoforms were either unchanged or increased. System y(+)L activity was also inhibited by PMA. The extent and onset of inhibition varied between cell lines; however, a PMA-induced increase in arginine transport was never observed. In addition, when expressed in Xenopus laevis oocytes, y(+)LAT1 and y(+)LAT2 activity was reduced by PMA, and this inhibition could be prevented by the PKC inhibitor bisindolylmaleimide I. In ECV304 cells, PMA-induced inhibition of systems y(+) and y(+)L could be prevented by G?6976, a specific inhibitor of conventional PKCs. Thymelea toxin, which activates preferentially classical PKC, had a similar inhibitory effect as PMA. In contrast, phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl, an activator of atypical PKC, had no effect. These data demonstrate that systems y(+) and y(+)L are both downregulated by classical PKC.  相似文献   
8.
9.
Amino Acids - We have previously shown that particle-mediated epidermal delivery (PMED) of plasmids encoding β-galactosidase (βGal) under control of the fascin-1 promoter...  相似文献   
10.
A 37-year old male patient presented with frequent angina attacks (up to 40/day) largely resistant to classical vasodilator therapy. The patient showed severe coronary and peripheral endothelial dysfunction, increased platelet aggregation and increased platelet-derived superoxide production. The endothelial nitric oxide synthase (eNOS)-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) reduced superoxide formation in platelets identifying "uncoupled" eNOS as a superoxide source. Oral L-arginine normalized coronary and peripheral endothelial dysfunction and reduced platelet aggregation and eNOS-derived superoxide production. Plasma concentrations of the endogenous NOS inhibitor asymmetric dimethyl-L-arginine (ADMA), representing an independent risk factor for cardiovascular disease, were normal in the patient. However, immediately after oral administration of cationic amino acid (CAA), plasma ADMA levels rose markedly, demonstrating increased ADMA efflux from intracellular stores. ADMA efflux from mononuclear cells of the patient was accelerated by CAA, but not neutral amino acids (NAA) demonstrating impairment of y(+)LAT (whose expression was found reduced in these cells). These data suggest that impairment of y(+)LAT may cause intracellular (endothelial) ADMA accumulation leading to systemic endothelial dysfunction. This may represent a novel mechanism underlying vasospastic angina and vascular dysfunction in general. Moreover, these new findings contribute to the understanding of the l-arginine paradox, the improvement of eNOS activity by oral L-arginine despite sufficient cellular l-arginine levels to ensure proper function of this enzyme.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号