首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   7篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Defoliation of alfalfa (Medicago sativa L.) results in a cyclic pattern of starch degradation followed by reaccumulation in taproots. Characterization of changes in anatomical distribution of starch grains in taproots will aid our understanding of biochemical and physiological mechanisms involved in starch metabolism in taproots of this species. Our objectives were to determine the influence of defoliation on starch grain distribution and size variation in taproots of two alfalfa lines selected for contrasting concentrations of taproot starch. In addition, we used electron microscopy to examine the cellular environment of starch grains, and computer-based image optical analysis to determine how cross-sectional area of tissues influenced starch accumulation. Taproots of field-grown plants were sampled at defoliation and weekly thereafter over a 28-day period. Taproot segments were fixed in glutaraldehyde and prepared for either light or electron microscopy. Transverse sections were examined for number and size of starch grains and tissue areas were measured. Starch grains were located throughout bark tissues, but were confined primarily to ray parenchyma cells in wood tissues. During the first week of foliar regrowth after defoliation, starch grains in ray cells near the cambium disappeared first, while degradation of those near the center of the taproot was delayed. During the third and fourth weeks of regrowth, there was a uniform increase in number of starch grains per cell profile across the rays, but by 28 days after defoliation there were more starch grains in ray cells near the cambium than in cells near the center of the taproot (low starch line only). Bark tissues from both lines showed synchronous degradation and synthesis of starch grains that was not influenced greatly by cell location. Diameter of starch grains varied with cell location in medullary rays during rapid starch degradation, but was not influenced by cell position in bark tissues. Therefore, during foliar regrowth there is a spatial separation in starch degradation and synthesis in alfalfa taproots. Amyloplasts from alfalfa taproots contained numerous starch grains, prolamellar-, and electron-dense bodies. The high starch line had 23% more cross-sectional area as ray cells in wood tissues when compared to the low starch line, which may explain part of the difference in starch accumulation between these alfalfa lines.  相似文献   
2.
3.
4.
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi‐parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre‐breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.  相似文献   
5.
6.
7.
8.
Porphyromonas gingivalis is an oral bacterium that causes pathology in a number of dental infections that are associated with increased fibroblast cell death. Studies presented here demonstrated that P. gingivalis stimulates cell death by apoptosis rather than necrosis. Unlike previous studies apoptosis was induced independent of proteolytic activity and was also independent of caspase activity because a pancaspase inhibitor, Z-VAD-fmk, had little effect. Moreover, P. gingivalis downregulated caspase-3 mRNA levels and caspase-3 activity. The consequence of this downregulation was a significant reduction in tumour necrosis factor-alpha-induced apoptosis, which is caspase-3-dependent. Immunofluorescence and immunoblot analysis revealed P. gingivalis-induced translocation of apoptosis-inducing factor (AIF) from the cytoplasm to the nucleus. siRNA studies were undertaken and demonstrated that P. gingivalis stimulated cell death was significantly reduced when AIF was silenced (P < 0.05). Treatment of human gingival fibroblasts with H-89, a protein kinase A inhibitor that blocks AIF activation also reduced P. gingivalis-induced apoptosis (P < 0.05). These results indicate that P. gingivalis causes fibroblast apoptosis through a pathway that involves protein kinase A and AIF, is not dependent upon bacterial proteolytic activity and is also independent of the classic apoptotic pathways involving caspase-3.  相似文献   
9.
10.
Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8–10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号