首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   15篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   10篇
  1999年   8篇
  1998年   2篇
  1997年   1篇
  1996年   6篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1971年   2篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1960年   1篇
  1959年   1篇
  1958年   1篇
  1956年   1篇
  1948年   1篇
  1946年   1篇
  1945年   1篇
  1943年   1篇
  1936年   2篇
  1933年   1篇
  1907年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
1.
Anti-HIV test results of the Red Cross Blood Transfusion Service of Lower Saxony from 1 June 1985 to 31 July 1986 inclusive were analysed retrospectively. Nine out of 70,936 donors who had not donated blood before 1 June 1985 (first-time donors) and 9 out of 261,231 donors who had donated blood before this date (repeating donors) were found anti-HIV confirmed positive at the time of the first blood donation during the study period. The prevalence of HIV antibody in first-time donors was significantly higher than in repeating donors (p less than 0.01). It was concluded that some members of risk groups used blood donation to obtain an anti-HIV test result. One out of 30,300 blood donations was confirmed anti-HIV positive. The results of this study justify the transfusion of blood donations that are reactive only in the initial ELISA test.  相似文献   
2.
3.
4.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.  相似文献   
5.
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02 µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.  相似文献   
6.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
7.
A prokaryotic biotin acceptor domain was fused to the carboxy terminal end of the Chlorella hexose—proton sym- porter. The plant symporter is biotinylated in vivo when expressed in Schizosaccharomyces pombe. The extended biotinylated transport protein is fully active, catalyzes accumulation of d -glucose analogs and restores growth of a glucose-uptake-deficient yeast strain. Crude membranes were solubilized with octyl-β-d -glucoside in the presence of Escherichia colil -α-phosphatidylethanolamine. Biotinylated symporter was purified to homogeneity by biotinavidin affinity chromatography. The symporter protein was reconstituted together with cytochrome-c oxidase prepared from beef heart mitochondria into proteo-liposomes. Cytochrome-c oxidase is a redox-driven H+-pump generating a proton motive force (inside negative and alkaline) while transferring electrons from cytochrome-c to oxygen; this energy is used by the symporter to accumulate d -glucose at least 30-fold. In the absence of the driving force the transport protein facilitates diffusion of d -glucose until the concentration equilibrium is reached. It was shown that maximal transport activity depends highly on the amount of co-reconstituted cytochrome-c oxidase and that the symporter possesses 10% of its in vivo turnover number under optimized in vitro transport conditions.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号