首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2013年   1篇
  2010年   1篇
  2005年   1篇
  2002年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Pedunculate oak (Quercus robur L.) was germinated and grown at ambient CO2 concentration and 650 μmol mol?1 CO2 in the presence and absence of the ectomycorrhizal fungus Laccaria laccata for a total of 22 weeks under nonlimiting nutrient conditions. Sulphate uptake, xylem loading and exudation were analysed in excised roots. Despite a relatively high affinity for sulphate (KM= 1.6 mmol m?3), the rates of sulphate uptake by excised lateral roots of mycorrhizal oak trees were low as compared to herbaceous plants. Rates of sulphate uptake were similar in mycorrhizal and non-mycorrhizal roots and were not affected by growth of the trees at elevated CO2. However, the total uptake of sulphate per plant was enhanced by elevated CO2 and further enhanced by elevated CO2 and mycorrhization. Sulphate uptake seemed to be closely correlated with biomass accumulation under the conditions applied. The percentage of the sulphate taken up by mycorrhizal oak roots that was loaded into the xylem was an order of magnitude lower than previously observed for herbaceous plants. The rate of xylem loading was enhanced by mycorrhization and, in roots of mycorrhizal trees only, by growth at elevated CO2. On a whole-plant basis this increase in xylem loading could only partially be explained by the increased growth of the trees. Elevated CO2 and mycorrhization appeared to increase greatly the sulphate supply of the shoot at the level of xylem loading. For all treatments, calculated rates of sulphate exudation were significantly lower than the corresponding rates of xylem loading of sulphate. Radiolabelled sulphate loaded into the xylem therefore seems to be readily diluted by unlabelled sulphate during xylem transport. Allocation of reduced sulphur from oak leaves was studied by flap-feeding radiolabelled GSH to mature oak leaves. The rate of export of radioactivity from the fed leaves was 4–5 times higher in mycorrhizal oak trees grown at elevated CO2 than in those grown at ambient CO2. Export of radiolabel proceeded almost exclusively in a basipetal direction to the roots. From these experiments it can be concluded that, in mycorrhizal oak trees grown at elevated CO2, the transport of sulphate to the shoot is increased at the level of xylem loading to enable increased sulphate reduction in the leaves. Increased sulphate reduction seems to be required for the enhanced allocation of reduced sulphur to the roots which is observed in trees grown at elevated CO2. These changes in sulphate and reduced sulphur allocation may be a prerequisite for the positive effect of elevated CO2 on growth of oak trees previously observed.  相似文献   
2.
In short-term experiments sulphate influx of excised tobaccoroots {Nicotiana tabacum L. var. 'Samsun') followed monophasicMichaelis-Menten kinetics with an approximate Km of 12 ±4 µM and vmax of 657 ± 211 nmol g–1 FW h–1.An inhibition of sulphate influx, xylem loading and exudationof more than 70% was achieved with 01 mM GSH within 1 h. Cysteinewas two orders of magnitude more effective as an inhibitor thanGSH. An inhibition of more than 75% was already obtained with1.0µM cysteine. It may, therefore, be assumed that GSHis decomposed to yield cysteine concentrations that may inhibitsulphate influx, xylem loading and exudation. When BSO, a specificinhibitor of the initial step of GSH synthesis, was added, cysteine-mediatedinhibition on sulphate influx, xylem loading and exudation wasstrongly diminished. Apparently, GSH synthesis is required toobtain inhibition of these processes by cysteine. The physiologicalmechanisms that may cause the inhibition of sulphate influx,xylem loading and exudation by glutathione are discussed. Key words: Sulphate transport, Nicotiana, Solanaceae, glutathione, cysteine, buthionine sulphoximine  相似文献   
3.
We compared three transgenic poplar lines over‐expressing the bacterial γ‐glutamylcysteine synthetase (GSH1) targeted to plastids. Lines Lggs6 and Lggs12 have two copies, while line Lggs20 has three copies of the transgene. The three lines differ in their expression levels of the transgene and in the accumulation of γ‐glutamylcysteine (γ‐EC) and glutathione (GSH) in leaves, roots and phloem exudates. The lowest transgene expression level was observed in line Lggs6 which showed an increased growth, an enhanced rate of photosynthesis and a decreased excitation pressure (1‐qP). The latter typically represents a lower reduction state of the plastoquinone pool, and thereby facilitates electron flow along the electron transport chain. Line Lggs12 showed the highest transgene expression level, highest γ‐EC accumulation in leaves and highest GSH enrichment in phloem exudates and roots. This line also exhibited a reduced growth, and after a prolonged growth of 4.5 months, symptoms of leaf injury. Decreased maximum quantum yield (Fv/Fm) indicated down‐regulation of photosystem II reaction centre (PSII RC), which correlates with decreased PSII RC protein D1 (PsbA) and diminished light‐harvesting complex (Lhcb1). Potential effects of changes in chloroplastic and cytosolic GSH contents on photosynthesis, growth and the whole‐plant sulphur nutrition are discussed for each line.  相似文献   
4.
5.
The aim of the present study was to analyse whether offspring of mature Quercus ilex trees grown under life‐long elevated pCO2 show alterations in the physiological response to elevated pCO2 in comparison with those originating from mature trees grown at current ambient pCO2. To investigate changes in C‐ (for changes in photosynthesis, biomass and lignin see Polle, McKee & Blaschke Plant, Cell and Environment 24, 1075–1083, 2001), N‐, and S‐metabolism soluble sugar, soluble non‐proteinogenic nitrogen compounds (TSNN), nitrate reductase (NR), thiols, adenosine 5′‐phosphosulphate (APS) reductase, and anions were analysed. For this purpose Q. ilex seedlings were grown from acorns of mother tree stands at a natural spring site (elevated pCO2) and a control site (ambient pCO2) of the Laiatico spring, Central Italy. Short‐term elevated pCO2 exposure of the offspring of control oaks lead to higher sugar contents in stem tissues, to a reduced TSNN content in leaves, and basipetal stem tissues, to diminished thiol contents in all tissues analysed, and to reduced APS reductase activity in both, leaves and roots. Most of the components of C‐, N‐ and S‐metabolism including APS reductase activity which were reduced due to short‐term elevated pCO2 exposure were recovered by life‐long growth under elevated pCO2 in the offspring of spring oaks. Still TSNN contents in phloem exudates increased, nitrate contents in lateral roots and glutathione in leaves and phloem exudates remained reduced in these plants. The present results demonstrated that metabolic adaptations of Q. ilex mother trees to elevated pCO2 can be passed to the next generation. Short‐ and long‐term effects on source‐to‐sink relation and physiological and genetic acclimation to elevated pCO2 are discussed.  相似文献   
6.
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long‐living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号