首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  1998年   2篇
  1997年   3篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
HERPPICH  W.B. 《Photosynthetica》1998,34(1):1-12
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides.  相似文献   
2.
Well-watered plants of Plectranthus marrubioides Benth., a crassulacean acid metabolism (CAM) species naturally inhabiting sun exposed succulent places, were grown at photosynthetically active photon flux densities (PPFD) of either 150 (LL) or 300 (HL) μmol m-2 s-1 in a controlled environment. Photosynthesis of LL plants was saturated by irradiance of ca. 500 μmol m-2 s-1 while in HL plants saturation was not reached up to 1200 μmol m-2 s-1 and photosynthetic capacity was nearly 50 % higher than in the LL plants. However, maximum photon yield was 55 % lower and compensation irradiance was 25 % higher in LL plants. The former also had larger, more succulent leaves, i.e., they were morphologically more sun adapted. On the other hand, nocturnal accumulation of malic and citric acid, nighttime CO2 gain, and the low relative carbon recycling were independent of the prevailing PPFD. Furthermore, photosynthetic performance was flexibly and reversibly adjusted in HL plants after transfer to 600 or 150 μmol m-2 s-1 while nocturnal CO2 uptake was not influenced. Photosynthesis showed a high acclimation potential to high PPFD and patterns of gas exchange became more C3-like the higher the irradiance was, without a direct effect on CAM in P. marrubioides. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
4.
Plants of the crassulacean acid metabolism (CAM) species Plectranthus marrubioides (Lamiaceae) were subjected to short- and long-term changes in air humidity in controlled-environment experiments. Stomata of well-watered individuals of this all-cell leaf-succulent taxon responded directly, quickly and reversibly to variations of the water vapour gradient between leaf and air (Δw). Mean night-time leaf conductance to water vapour decreased curvilinearly with increasing Δw but linearly with lowered relative air humidity. Stomatal response was generally independent of the prevailing temperature and was not linked to CO2 uptake rates. Therefore, net night-time carbon gain, nocturnal malic acid accumulation and, thus, relative carbon recycling were not influenced by changes in air humidity in the temperature range tested. Mean nocturnal molar water use efficiency, however, decreased with decreasing air humidity because of the increased transpirational water loss. If watering was repeatedly withheld for several days during the experiments, employing a temperature regime of 35/30°C day and night, stomatal conductance became low enough to inhibit CO2 uptake, but only at the highest Δw. The results suggest that drought stress was necessary to increase responsiveness of plants to the point where CAM was also inhibited by decreases in air humidity.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号