首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
2.
Microbial dissimilatory iron reduction (DIR) is widespread in anaerobic sediments and is a key producer of aqueous Fe(II) in suboxic sediments that contain reactive ferric oxides. Previous studies have shown that DIR produces some of the largest natural fractionations of stable Fe isotopes, although the mechanism of this isotopic fractionation is not yet well understood. Here we compare Fe isotope fractionations produced by similar cultures of Geobacter sulfurreducens strain PCA and Shewanella putrefaciens strain CN32 during reduction of hematite and goethite. Both species produce aqueous Fe(II) that is depleted in the heavy Fe isotopes, as expressed by a decrease in 56Fe/54Fe ratios or δ56Fe values. The low δ56Fe values for aqueous Fe(II) produced by DIR reflect isotopic exchange among three Fe inventories: aqueous Fe(II) (Fe(II)aq), sorbed Fe(II) (Fe(II)sorb), and a reactive Fe(III) component on the ferric oxide surface (Fe(III)reac). The fractionation in 56Fe/54Fe ratios between Fe(II)aq and Fe(III)reac was –2.95‰, and this remained constant over the timescales of the experiments (280 d). The Fe(II)aq – Fe(III)reac fractionation was independent of the ferric Fe substrate (hematite or goethite) and bacterial species, indicating a common mechanism for Fe isotope fractionation during DIR. Moreover, the Fe(II)aq – Fe(III)reac fractionation in 56Fe/54Fe ratios during DIR is identical within error of the equilibrium Fe(II)aq – ferric oxide fractionation in abiological systems at room temperatures. This suggests that the role of bacteria in producing Fe isotope fractionations during DIR lies in catalyzing coupled atom and electron exchange between Fe(II)aq and Fe(III)reac so that equilibrium Fe isotope partitioning occurs. Although Fe isotope fractionation between Fe(II)aq and Fe(III)reac remained constant, the absolute δ56Fe values for Fe(II)aq varied as a function of the relative proportions of Fe(II)aq, Fe(II)sorb, and Fe(III)reac during reduction. The temporal variations in these proportions were unique to hematite or goethite but independent of bacterial species. In the case of hematite reduction, the small measured Fe(II)aq – Fe(II)sorb fractionation of −0.30‰ in 56Fe/54Fe ratios, combined with the small proportion of Fe(II)sorb, produced insignificant (<0.05‰) isotopic effects due to sorption of Fe(II). Sorption of Fe(II) produced small, but significant effects during reduction of goethite, reflecting the higher proportion of Fe(II)sorb and larger measured Fe(II)aq – Fe(II)sorb fractionation of –0.87‰ in 56Fe/54Fe ratios for goethite. The isotopic effects of sorption on the δ56Fe values for Fe(II)aq were largest during the initial stages of reduction when Fe(II)sorb was the major ferrous Fe species during goethite reduction, on the order of 0.3 to 0.4‰. With continued reduction, however, the isotopic effects of sorption decreased to <0.2‰. These results provide insight into the mechanisms that produce Fe isotope fractionation during DIR, and form the basis for interpretation of Fe isotope variations in modern and ancient natural systems where DIR may have driven Fe cycling.  相似文献   
3.
The Scandinavian wolf population represents one of the genetically most well-characterized examples of a severely bottlenecked natural population (with only two founders), and of how the addition of new genetic material (one immigrant) can at least temporarily provide a 'genetic rescue'. However, inbreeding depression has been observed in this population and in the absence of additional immigrants, its long-term viability is questioned. To study the effects of inbreeding and selection on genomic diversity, we performed a genomic scan with approximately 250 microsatellite markers distributed across all autosomes and the X chromosome. We found linkage disequilibrium (LD) that extended up to distances of 50 Mb, exceeding that of most outbreeding species studied thus far. LD was particularly pronounced on the X chromosome. Overall levels of observed genomic heterozygosity did not deviate significantly from simulations based on known population history, giving no support for a general selection for heterozygotes. However, we found evidence supporting balancing selection at a number of loci and also evidence suggesting directional selection at other loci. For markers on chromosome 23, the signal of selection was particularly strong, indicating that purifying selection against deleterious alleles may have occurred even in this very small population. These data suggest that population genomics allows the exploration of the effects of neutral and non-neutral evolution on a finer scale than what has previously been possible.  相似文献   
4.
The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown‐level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch‐level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day‐ and night‐time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure–volume relations were obtained in Quercus lanceifolia, a canopy‐dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry‐season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry‐season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night‐time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia.  相似文献   
5.
A phylogenetic scheme derived via multivariate analyses of adaptively neutral scale characteristics is compared to patterns of ecological adaptation in body size and shape, hatchling size, clutch size, and reproductive seasonality, in extant populations of Galapagos land iguanas (genus Conolophus). Three groups of land iguana populations are identified, the oldest being the population of Isla Santa Fe, followed by the populations of the central islands (Santa Cruz, Plaza Sur and Baltra), the youngest populations are those of the western islands (Fernandina and Isabela). Patterns of ecological similarity among these populations are not concordant with phylogenetic lineage. Populations most similar in ecological characteristics are often phylogenetically divergent. Adaptation to local conditions by iguana populations is apparently more important than phylogenetic constraint in explaining variation in ecological characteristics. The assumption that phylogenetically closely-related organisms are also ecologically more similar than less closely-related organisms is not supported by this evidence. Some previous studies may have been misled by using ecological characteristics to derive phylogenetic lineages, resulting in circular support of the assumption.  相似文献   
6.
SYNOPSIS. Pair formation is a prerequisite for reproductionin California condors and exploring the process has been centralto the captive breeding program for this endangered species.Observations show that once birds reach sexual maturity theycan form pairs within a matter of months; even birds who havelost or been separated from their mates will successfully bondwith others. However, some adults who are housed together showlittle indication of pairing. When such birds are placed withother potential mates they frequently successfully pair andproduce young, suggesting that individual differences play arole in pair formation. We recommend that adults who have notbonded within two years be housed with different potential mates. Condors raised together may or may not form pair bonds uponreaching sexual maturity; unfamiliar condors introduced at fouryears of age or older will form pair bonds. In the four caseswhere pairings have been successful the male initiates moreintrapair interactions with aggressive behavior than does thefemale. Unpaired condors housed in groups do show courtshipand the most dominant birds, usually males, are the most activein giving wings-out/head-down displays. Displays may be directedto males or females and may signal dominance and/or interest.Displays may be followed by mounts and one female may crowdin front of the bird to whom a male is displaying, increasingthe chances that she will receive the display and be mounted.Displaying and the response to displaying birds may be mechanismswhich influence mate selection.  相似文献   
7.
Assessment of locomotor modes in fossil taxa must often be made on the basis of heavily fragmented postcranial material. Previous authors have used quantitative methods to determine locomotor function from whole postcranial elements. The goals of this project were to assess the ability of element shape to discern between locomotor modes through landmark analysis, and to apply the results to assessment of fossils. Results suggest that element shape is a good predictor of function, but that different elements have different predictive capacities for each locomotor mode. Additionally, a relationship between size and shape exists that appears to drive morphological differentiation in the group. Finally, data from the extant sample were applied to fossil material of the extinct Plio-Pleistocene taxon Trigonictis . The results suggest that the locomotor mode of Trigonictis was generalized and probably an intermediate between the half-bound locomotion found in weasels and ferrets and the scansorial locomotion of martens and fishers.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 150 , 895–914.  相似文献   
8.
9.
Carbon monoxide (CO) plays a major role in tropospheric chemical dynamics. Accordingly, global CO budgets have been reasonably well documented. Atmospheric CO consumption by soils contributes significantly to these budgets, with the magnitude of the sink generally considered to reflect a balance between microbial uptake and abiological production. However, assays of live fine roots showed that diverse intact plants produced carbon monoxide at net rates ranging from 2 to 3000 mµg gdw−−1 d−−1. CO production was greater for legumes than nonlegumes, and primarily associated with nodules. Excised roots from woody and herbaceous plants produced CO at comparable rates. CO production rates were similar for roots of intact plants and roots excised from those plants. The magnitude of net CO fluxes from roots was determined in part by the balance between simultaneous production and consumption. Surface sterilization of roots indicated that CO consumption was due, in part, rhizoplane CO-oxidizing bacteria, but maximum CO consumption rates were typically only a small fraction of net production rates. Assays in a Brazilian agroecosystem indicated that root CO production affects soil–atmosphere CO exchange. Estimates of global CO production rates indicated that roots contribute about 170–260 Tg CO to the soil atmosphere annually, an amount comparable to current estimates of atmospheric CO uptake by soils, and much larger than estimates of net abiological soil CO production.  相似文献   
10.
In a population of Lapwings Vanellus vanellus studied for 5 years near Bergen, southwester Norway, 23–41% of the males were polygynous, having two and sometimes three mates, whereas 50–77% were monogamous and 0–21% remained unmated. Bachelors held territories in or immediately adjacent to the study area each of the years. As predicted from the Polygyny Threshold model, primary females generally laid eggs earlier than monogamous females, but the overlap in laying dates was substantial between these two classes. The number of females and start of breeding on the territories were analysed in relation to nine variables pertaining to safety from predation and to food. Of these, territory size correlated most consistently with number of females (positively) and the laying of first egg (negatively). Numbers of females observed were not significantly different from numbers expected from territory size in 4 out of 5 years; however, earlier start of breeding on large territories indicated that females did not settle according to the Neutral Mate Choice model. The Female-biased Sex Ratio hypothesis was refuted, unmated territorial males being available throughout the breeding seasons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号