首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
  2019年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   7篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2005年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
  1972年   1篇
  1971年   1篇
  1957年   2篇
  1956年   2篇
  1955年   3篇
  1954年   1篇
  1949年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Ibarra-Caballero, J., Villanueva-Verduzco, C., Molina-Galan,J. and Sanchez-de-Jimenez, E. 1988. Proline accumulation asa symptom of drought stress in maize: a tissue differentiationrequirement.—J. exp. Bot. 39: 889–897. Seedlings and callus tissue of maize (Zea mays L.) were testedfor proline accumulation under drought stress. A variety froma tropical humid region, a semi-desertic variety and its improvedpopulation selected for drought stress resistance, were usedfor this study. Proline accumulation was found in green leaves of maize seedlingsunder drought stress; no correlation was found between prolineaccumulation in leaves and the variety or population tested.White tissue, callus and leaves of etiolated seedlings did notshow this response to drought stress, nor did green callus ordetached leaves (green or etiolated), even when stress causeda loss of water from leaves similar to that observed when wholeseedlings were drought-stressed. Addition of abscisic acid togreen or white tissue did not result in proline accumulation.The above data indicate that proline accumulation caused bydrought stress does not seem to be an indication of droughtstress resistance, but rather a symptom of it. For this accumulationto take place it seems that fully organized chloroplasts arerequired as well as the systemic development of the plant. Key words: Proline, maize, drought-stress  相似文献   
2.
Light Interception and Photosynthetic Efficiency in Some Glasshouse Crops   总被引:5,自引:0,他引:5  
Productivity of glasshouse crops is strongly limited by lightreceipt, and efficient interception and use of light in photosynthesisis correspondingly important. Mature row crop canopies of cucumberand tomato intercepted about 76% of the light incident on theirupper surfaces; about 18% was lost through gaps between therows. Light transmitted through the entire depth of the canopywas reflected back by white plastic on the ground, so that thelower surface of the canopy received approximately 13% of thelight incident on the upper surface. The light flux incidenton the sides of these canopies (c. 2m tall and 6m x 16m in area)amounted to some 20–30% of that incident on the uppersurface. About 32% of daylight falling on the glasshouse (c.9m x 18m in area) was intercepted by the glasshouse structureand glazing; of the 68% entering the house, some fell on headlandsoccupying 35% of the glasshouse area. The loss of light to headlands,and the gain from canopy side-lighting, would be relativelysmaller for larger glasshouses. At near-ambient CO2 concentrations, net photosynthetic ratesof the cucumber canopy were comparable to those of closed canopiesof other glasshouse and field crops which have maximum lightconversion efficiencies of 5–8µg CO2 J–1 at50–200 W m–2 incident light flux density. Efficiencydecreases only slightly with stronger light. Glasshouse cropswith CO2 enrichment to 1200 vpm achieve conversion efficienciesof 7–10µg CO2 J–1. Efficiencies of utilizationof intercepted light, on an energy basis, reach 6–10%in various field and glasshouse crops with near-ambient CO2,and reached an exceptional 11% for the cucumber canopy. Glasshousecrops with CO2 enrichment achieve maximum efficiency of lightenergy utilization between 12% and 13%. Key words: Glasshouse cucumber and tomato, light interception and utilization, photosynthetic efficiency, row crops  相似文献   
3.
A fluorescent antibody technique was developed for the determination of the capsular-type of strains of Staphylococcus aureus. It compared favourably with the method using serum-soft agar (Yoshida 1972). With the new technique, many populations of encapsulated and unencapsulated strains were investigated. Of 1421 fresh isolates of Staph. aureus , 54 were encapsulated and among these 54·8% and 48·1% were mono- and polyvalent, respectively. Capsular-type antigens A and B were found in 92·5% and 44·4% of strains respectively; capsular-types C and D were found relatively infrequently. In the other group, of unencapsulated strains, capsular-type antigen production was demonstrated in 125 out of 163 strains examined. Mono- and polyvalent capsular-types (A and B antigen producing strains) comprised 77·6% and 22·4%. respectively. In these capsular-types A and B were found in 54·4% and 62·4%, respectively: capsular-type antigen C and D producing strains were again infrequent. These results indicate that a majority of ordinary Staph . aureus strains produce capsular-type antigens although isolation of the encapsulated strains is infrequent.  相似文献   
4.

Background

Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages.

Methods

We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay.

Results

Multiple IFN-γ–stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques.

Discussion

This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.  相似文献   
5.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   
6.
Abstract This study reports on the responses of bird assemblages to woodland clearance, fragmentation and habitat disturbance in central Queensland Australia, a region exposed to very high rates of vegetation clearance over the last two to three decades. Many previous studies of clearing impacts have considered situations where there is a very sharp management contrast between uncleared lands and cleared areas: in this situation, the contrast is more muted, because both cleared lands and uncleared savanna woodlands are exposed to cattle grazing, invasion by the exotic grass Cenchrus ciliaris and similar fire management. Bird species richness (at the scale of a 1‐ha quadrat) was least in cleared areas (8.1 species), then regrowth areas (14.6 species), then uncleared woodlands (19.9 species). Richness at this scale was unrelated to woodland fragment size, connectivity or habitat condition; but declined significantly with increasing abundance of miners (interspecifically aggressive colonial honeyeaters). At whole of patch scale, richness increased with fragment size and decreased with abundance of miners. This study demonstrates complex responses of individual bird species to a regional management cocktail of disturbance elements. Of 71 individual bird species modelled for woodland fragment sites, the quadrat‐level abundance of 40 species was significantly related to at least one variable representing environmental position (across a rainfall gradient), fragment condition, fragment size and/or connectivity. This study suggests that priorities for conservation management include: cessation of broad‐scale clearing; increased protection for regrowth (particularly where this may bolster connectivity and/or size of woodland fragments); control of miners; maintenance of fallen woody debris in woodlands; increase in fire frequency; and reduction in the incidence of grazing and exotic pasture grass.  相似文献   
7.
8.
9.
10.
Masquerading animals benefit from the difficulty that predators have in differentiating them from the inedible objects, such as twigs, that they resemble. The function of masquerade has been demonstrated, but how it interacts with the life history of organisms has not yet been studied. Here, we report the use of comparative analyses to test hypotheses linking masquerade to life‐history parameters. We constructed a phylogenetic tree of the British species of the lepidoptera families Geometridae and Drepanidae, and compiled life history and coloration data from the literature. We found that masquerade is associated with the exploitation of a greater diversity of host plants whether measured by the number of families or genera. We found a positive relationship between body size and polyphagy among masquerading species, and no relationship among cryptic species. Among those species predominantly found on woody host plants, masquerading species are more likely to overwinter as larvae while cryptic species mostly overwinter as pupae. Polyphenism was associated with multivoltinism in masquerading species but not cryptic species. Taken together, our results show that masquerade must be viewed as a strategy distinct to crypsis and hence may provide insights into the evolution of both defensive strategies. Our study further demonstrates the utility of broad‐scale between‐species comparisons in studying associations between diverse life‐history parameters and sensory aspects of predator‐prey interactions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 90–103.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号