首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2008年   1篇
  1999年   1篇
  1978年   1篇
排序方式: 共有4条查询结果,搜索用时 18 毫秒
1
1.
Incubation of hydrated Tortula ruralis (Hedw.) Gaertn., Meyer. Scherb. at temperatures down to 2°C resulted in an accumulation of polyribosomes and a decrease in single ribosomes. No changes in the levels of ribosomal subunits were detected. On rehydration of slowly dried moss, which contains no polyribosomes, these were reormed at 2, 8 and 20°C. Rapid incorporation of labelled leucine into protein was observed on reintroduction of the desiccated plant o water at 20°C and there was significant, but much reduced, ncorporation at 2°C. Previously undesiccated moss was also able o take up radioactive leucine and to synthesize protein at 2 and -2.5°C. Changes in the rate of protein synthesis at low temperature were not detected in cold hardened (winter collected or incubated at 2°C) T. ruralis. The moss appears to be adapted to survive freezing wear round and even summer-collected moss can conduct protein synthesis at low temperatures: seasonal cold hardiness changes do lot appear to take place.  相似文献   
2.
The imposition of the stresses of climate change (higher temperatures and in many regions lower rainfall) on existing stressors, such as habitat loss and degradation, will increase pressures on native fauna already experiencing declines. We focused on assessing how the ‘Big Dry’ (severe drought, 1997–2010) in south‐eastern Australia affected populations of a small marsupial carnivore, the yellow‐footed antechinus (Antechinus flavipes), in box‐ironbark forests, which suffer a range of anthropogenic disturbances. Trapping of the mammal was conducted on 136 (0.25 ha) sites in two box‐ironbark forests in 2004, 2005 and 2011 (46 or 64 sites per year). Capture rates of all distinct individuals, males and second‐year females with suckled teats, and the number of suckled teats were positively associated with rainfall in the previous September (time of lactation and deposition of young in nests). Despite differences between forests in capture rates of all individuals, the positive effect of rainfall was evident in both forests. Populations in one forest, Chiltern, were substantially larger than other locations surveyed in 2004 and 2005, yet crashed to small numbers in 2011. This crash was most likely due to low rainfall in the preceding years including the lowest recorded annual rainfall (2006), below‐average annual rainfall (2007, 2008 and 2009) and well‐below‐average rainfall in September (2006, 2007 and 2008). The predicted drying and warming climate in south‐eastern Australia and habitat loss and degradation pose a threat to the viability of the yellow‐footed antechinus in box‐ironbark forests. An integrated approach to small‐mammal management is necessary given that the region may be facing additional losses, especially during droughts, to those already experienced since the early 1800s. Our work emphasizes the need to identify specific effects of stressors on vital demographic characteristics of species.  相似文献   
3.
Ecological factors are important drivers of phenotypic divergence, which may lead to incipient speciation. A variety of habitats should be preserved to maintain evolutionary potential. We used the marsupial, the yellow-footed antechinus ( Antechinus flavipes ) as a model species for investigating phenotypic differentiation between animals inhabiting two habitat types in south-eastern Australia: flood-plain river red gum and box–ironbark forests. All tested phenotypic characteristics varied between years at the same sites and therefore were not useful for investigating morphological specialization that may lead to speciation. Males generally were significantly heavier when antechinus densities were lower, but exceptions were found, possibly related to food availability. Teat-number variation recently has been shown to be associated with habitat specialization and incipient speciation within Antechinus agilis . We investigated genetic differentiation associated with this trait in A. flavipes . Population genetic analyses of microsatellite genotypes and mitochondrial DNA haplotypes revealed that sympatric 12-, 13- and 14-teat females in Chiltern forest were part of one freely interbreeding population. Our parentage analyses found two cases where 13-teat mothers produced 12-teat daughters. This suggests either plasticity or paternal genetic influence on the offspring's teat-number phenotype. Laboratory matings may be required to resolve the extent to which teat number is heritable in A. flavipes .  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 303–314.  相似文献   
4.
The complete nucleotide sequences of two Suberites domuncula cDNAs and one Sycon raphanus cDNA, all encoding ubiquitin, have been determined. One cDNA from S. domuncula codes for polyubiquitin with four tandemly repeated monomeric units and the second cDNA encodes ubiquitin fused to a ribosomal protein of 78 amino acids (aa). S. domuncula possesses at least one additional polyubiquitin gene, from which the last two monomers were also sequenced. All analysed genes from S. domuncula encode identical ubiquitin proteins, with only one aa difference (Ala 19) to the human/higher animals ubiquitin (Pro 19). Ubiquitin in S. domuncula is identical with the ubiquitin found in another Demospongia, Geodia cydonium. The cDNA from S. raphanus encodes polyubiquitin with seven tandemly repeated units. All these gene monomers code for the same ubiquitin, which differs from the human/higher animals ubiquitin only at position 24 (Asp in Sycon, Glu in others). However, ubiquitin from S. raphanus (Calcarea) shows two aa differences (positions 19 and 24), when compared with the ubiquitin sequences from the two Demospongiae. In a phylogenetic tree constructed by multiple sequence alignment of all sponge ubiquitin gene monomers so far identified, all monomers from the same species cluster together, with the clear exception of the monomer from S. domuncula ribosomal protein fusion gene. This monomer branches off first from the tree and forms a separate line; this gives evidence for a very ancient split of ubiquitin-ribosomal-protein fusion genes from polyubiquitin encoding genes and their long separate coexistence in eukaryotes. The ubiquitin extension protein from S. domuncula is 78 aa long, displays all characteristics of 76–81 aa long ribosomal fusion proteins and shows 78% identity in the first 73 aa with the human S27a protein. However, its C-terminal sequence: 69-GLTYVYKKSD-78 is more similar to the plant consensus (69-GLTYVYQ/NK-76), than to the higher animal consensus (69-CLTYCFNK-76). This protein isolated from a sponge, belonging to the phylogenetically oldest multicellular animals, the Porifera, branches off first from the phylogenetic tree of metazoan ubiquitin extension proteins of the small ribosomal subunits.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号