首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   9篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   7篇
  2001年   8篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   4篇
  1992年   3篇
  1990年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有112条查询结果,搜索用时 281 毫秒
1.
The Drosophila sex-lethal (Sxl) protein, a regulator of somatic sexual differentiation, is an RNA binding protein with two potential RNA recognition motifs (RRMs). It is thought to exert its function on splicing by binding to specific RNA sequences within Sxl and transformer (tra) pre-mRNAs. To examine the Sxl RNA binding specificity in detail, we performed in vitro selection and amplification of ligand RNAs from a random sequence pool on the basis of affinity with Sxl protein. After three cycles of selection and amplification, we cloned and sequenced 17 cDNAs corresponding to the RNAs selected in vitro. Sequencing showed that most of the RNAs selected contain polyuridine stretches surrounded by purine residues. In vitro binding analysis revealed that the sequences of the in vitro selected RNAs with relatively high affinity for Sxl show similarity to that of the Sxl- and tra-regulated acceptor regions, including the invariant AG sequence for splicing. These results suggest that Sxl recognizes and preferentially binds to a polyuridine stretch with a downstream AG sequence.  相似文献   
2.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  相似文献   
3.
4.
Vertebral bodies of teleost fish are formed by the sclerotomal bone covering the chordacentrum. The internal part of the sclerotomal bone is composed of an amphicoelous hourglass shaped autocentrum, which is common in most fish species. In contrast, the external shape of the sclerotomal bone varies extensively among species. There are multiple hypotheses regarding the composition and formation of the external structure. However, as they are based on studies of few extant or extinct species, their applicability to other species remains to be clarified. To understand the morphology, formation, and composition of vertebral bodies in teleosts, we performed a comparative analysis using micro-CT scans of 32 species from 10 orders of Teleostei and investigated the detailed morphology of the sclerotomal bone, especially its plate-like ridge and trabeculae. We discovered two structural characteristics that are shared among most of the examined species. One was the sheet-like trabeculae that extend radially from the center of the vertebral body with a constant thickness. The other was the presence of hollow spaces on the internal parts of the lateral ridge and trabeculae. The combination of different arrangements of sheet-like trabeculae and internal hollow spaces formed different shapes of the lateral structure of the vertebral body. The properties of these two characteristics suggest that the external part of the sclerotomal bone grows outward by deposition at the bone tip, and that, concurrently, bone absorption occurs in the internal part of the sclerotomal bone. The vertebral arches were also formed by the sheet-like trabeculae, indicating that both, the vertebral body and the arches, are formed by the same component. The micro-CT scanning data were uploaded to a public database so they can be used for future studies on fish vertebrae.  相似文献   
5.
Inhibitor 2 (I-2) is a ubiquitous regulator of type 1 protein phosphatase (PP1). Previous in vitro studies suggested that its inhibitory activity towards PP1 is regulated by phosphorylation at Thr72 by glycogen synthase kinase-3beta (GSK-3beta), and at Ser86, Ser120, and Ser121 by casein kinase 2 (CK2). Here we report that GSK-3beta expressed in COS-7 cells phosphorylates wild-type I-2 but not an I-2 mutant carrying a T to A substitution at residue 72, showing that GSK-3beta phosphorylates I-2 at T72 in vivo as well. Co-immunoprecipitation study demonstrated that HA-GSK-3beta and I-2-FLAG co-exist in a same complex in the intact cells, but they do not bind directly. It is noteworthy that co-expression of Myc-PP1C significantly increased co-precipitation of HA-GSK-3beta with I-2-FLAG, showing a complex formation of HA-GSK-3beta/Myc-PP1C / I-2-FLAG in vivo. Further studies using a GSK-3beta kinase-dead mutant and LiCl, an inhibitor of GSK-3beta, showed that the enzyme activity of GSK-3beta is required for co-precipitation. IP-Western study using several I-2 mutants substituted at phosphorylation sites (T72, S86, S120, and S121) suggested that phosphorylation of I-2 by CK2 is also involved in enhancement of association between GSK-3beta and I-2 in vivo. This study is the first demonstration that GSK-3beta associates with PP1C/I-2 complex and phosphorylates I-2 at T72 in the intact cells.  相似文献   
6.
Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatiotemporal control.  相似文献   
7.
By using specific anti-ACAT-1 antibodies in immunodepletion studies, we previously found that ACAT-1, a 50-kDa protein, plays a major catalytic role in the adult human liver, adrenal glands, macrophages, and kidneys but not in the intestine. Acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in the intestine may be largely derived from a different ACAT protein. To test this hypothesis, we produced specific polyclonal anti-ACAT-2 antibodies that quantitatively immunodepleted human ACAT-2, a 46-kDa protein expressed in Chinese hamster ovary cells. In hepatocyte-like HepG2 cells, ACAT-1 comprises 85-90% of the total ACAT activity, with the remainder attributed to ACAT-2. In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2. ACAT-1 and ACAT-2 do not form hetero-oligomeric complexes. In differentiating intestinal enterocyte-like Caco-2 cells, ACAT-2 protein content increases by 5-10-fold in 6 days, whereas ACAT-1 protein content remains relatively constant. In the small intestine, ACAT-2 is concentrated at the apices of the villi, whereas ACAT-1 is uniformly distributed along the villus-crypt axis. In the human liver, ACAT-1 is present in both fetal and adult hepatocytes. In contrast, ACAT-2 is evident in fetal but not adult hepatocytes. Our results collectively suggest that in humans, ACAT-2 performs significant catalytic roles in the fetal liver and in intestinal enterocytes.  相似文献   
8.
9.
Dipeptidyl peptidase IV (DPP-IV) inhibitors are looked to as a potential new antidiabetic agent class. A series of [(S)-gamma-(arylamino)prolyl]thiazolidine compounds in which the electrophilic nitrile is removed are chemically stable DPP-IV inhibitors. To discover a structure for the gamma-substituent of the proline moiety more suitable for interacting with the S(2) pocket of DPP-IV, optimization focused on the gamma-substituent was carried out. The indoline compound 22e showed a DPP-IV-inhibitory activity 100-fold more potent than that of the prolylthiazolidine 10 and comparable to that of NVP-DPP728. It also displayed improved inhibitory selectivity for DPP-IV over DPP8 and DPP9 compared to compound 10. Indoline compounds such as 22e have a rigid conformation with double restriction of the aromatic moiety by proline and indoline structures to promote interaction with the binding site in the S(2) pocket of DPP-IV. The double restriction effect provides a potent inhibitory activity which compensates for the decrease in activity caused by removing the electrophilic nitrile.  相似文献   
10.
Chlorella, when heterotrophically cultivated in the dark, is able to grow with Zn2+ at 10-40 mM, which is 10 times the concentration lethal to autotrophically grown cells. However, the lag phase is prolonged with increasing concentrations of Zn2+; for example, in this study, 1 d of the control lag phase was prolonged to about 16 d with Zn2+ at 16.7 mM (x2,000 of the control). Once the cells started to grow, the log phase was finished within 4-6 d regardless of Zn concentration, which was almost the same as that of the control. The photosysystem I reaction center chlorophyll, P700, and the far-red fluorescence were detected only after the late log phase of the growth curve, suggesting that chlorophyll-protein complexes can be organized after cell division has ceased. Interestingly, at more than 16.7 mM of Zn2+, Zn-chlorophyll a was accumulated and finally accounted for about 25% of the total chlorophyll a in the late stationary phase. We found that the Zn-chlorophyll a was present in the thylakoid membranes and not in the soluble fractions of the cells. The rather low fluorescence yield at around 680 nm in the stationary phase suggests that Zn-chlorophyll a can transfer its excitation energy to other chlorophylls. Before accumulation of Zn-chlorophyll a, a marked amount of pheophytin a was temporally accumulated, suggesting that Zn-chlorophyll a could be chemically synthesized via pheophytin a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号