首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1982年   1篇
排序方式: 共有16条查询结果,搜索用时 46 毫秒
1.
2.
High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.  相似文献   
3.
A sample of mud snails Hydrobia ulvae (Prosobranchia) from an intertidal population revealed that the shells of trematode-infected specimens were especially likely to be fouled with epibionts. Experimentally trematode-infected Biomphalaria glabrata (Pulmonata) appeared to be especially prone to develop epigrowth in comparison with uninfected conspecifics as well. These findings suggest an interaction between trematode infections and epibiosis in aquatic gastropods. The two most likely explanations for this are (1) that trematode infections weakens the snails' natural defences against epibionts, or (2) that the defences against epibionts also are effective against invading trematodes, causing snail specimens with a particularly good fouling defence to be less likely to become infected.  相似文献   
4.
Carcinoma in situ of the breast (CIS) comprise a heterogenous group of lesions, covering a wide spectrum of clinical conditions and histopathological changes. With respect to biological behavior, CIS range from biologically aggressive lesions with a substantial risk of progression into invasive carcinoma (IC), to lesions with a very low malignant potential. Two main types of CIS are described--ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). Previous studies of CIS indicate that approximately a third will subsequently develop IC. Autopsy studies indicate that CIS is frequently occurring and it was estimated that about 20% of all women will develop CIS during lifetime. Only a minor fraction is ever diagnosed, although the incidence of DCIS is increasing, especially related to mammography screening. The lack of knowledge about the biological significance of the histopathological subtypes was the background of the present study. In 1982, a nationwide, prospective study of CIS (protocol DBCG 82-IS) was initiated by the Danish Breast Cancer Cooperative Group (DBCG). From this protocol, the group of patients treated with breast conservation surgery (BCS) constituted the material for clinico-histological investigation. A total of 275 women were included in the period 1982-89. Follow-up studies showed that recurrence rate was significantly related to nuclear size of the primary lesion. Since nuclear changes might be related to DNA content and, furthermore, many invasive breast carcinomas were shown to be DNA aneuploid, flow cytometric (FCM) DNA ploidy analysis was performed in a series of DCIS lesions. More than 80% of these lesions were DNA aneuploid, with a distribution similar to that found in invasive carcinomas. This finding raised the hypothesis that the DNA pattern of an invasive carcinoma was already established at the preinvasive stage of DCIS. Therefore, FCM DNA analysis was performed on a series of ICs with predominance of DCIS. Partial or complete concordance in DNA ploidy between DCIS and IC within the individual case was found in most cases, except for the additional presence in the IC component of DNA hyperdiploid clones that might possibly be of importance for the process of invasion. In order to further characterize CIS lesions and, possibly, to discriminate biologically different groups, immunohistochemical markers were investigated in a consecutive series of CIS and IC with predominance of DCIS. The results were correlated to the histopathological and DNA ploidy findings. In DCIS, significant correlation was shown between large nuclear size and comedonecrosis, both of which showed also strong association to DNA aneuploidy, high proliferation activity, low steroid receptor content, and overexpression of c-erbB-2 and p53--factors that may indicate an aggressive behavior. Small nuclear CIS, whether LCIS or DCIS, on the contrary, were DNA diploid with low proliferation, and no cases showed overexpression of c-erbB-2 and p53. In IC, comparison of the DCIS and the invasive component showed similar patterns. No significant differences, in neither morphology, immunohistochemistry, nor DNA ploidy, were shown between DCIS without and with invasion. These findings may indicate that none of the parameters in question may on its own be essential for the decisive event of invasive growth.  相似文献   
5.
Dominant mutations in the Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons. The molecular mechanism underlying the toxic gain-of-function of mutant hSOD1s remains uncertain. Several lines of evidence suggest that toxicity to motor neurons requires damage to non-neuronal cells. In line with this observation, primary astrocytes isolated from mutant hSOD1 over-expressing rodents induce motor neuron death in co-culture. Mitochondrial alterations have been documented in both neuronal and glial cells from ALS patients as well as in ALS-animal models. In addition, mitochondrial dysfunction and increased oxidative stress have been linked to the toxicity of mutant hSOD1 in astrocytes and neurons. In mutant SOD1-linked ALS, mitochondrial alterations may be partially due to the increased association of mutant SOD1 with the outer membrane and intermembrane space of the mitochondria, where it can affect several critical aspects of mitochondrial function. We have previously shown that decreasing glutathione levels, which is crucial for peroxide detoxification in the mitochondria, significantly accelerates motor neuron death in hSOD1G93A mice. Here we employed a catalase targeted to the mitochondria to investigate the effect of increased mitochondrial peroxide detoxification capacity in models of mutant hSOD1-mediated motor neuron death. The over-expression of mitochondria-targeted catalase improved mitochondrial antioxidant defenses and mitochondrial function in hSOD1G93A astrocyte cultures. It also reverted the toxicity of hSOD1G93A-expressing astrocytes towards co-cultured motor neurons, however ALS-animals did not develop the disease later or survive longer. Hence, while increased oxidative stress and mitochondrial dysfunction have been extensively documented in ALS, these results suggest that preventing peroxide-mediated mitochondrial damage alone is not sufficient to delay the disease.  相似文献   
6.
Mutations in the retinoblastoma tumor suppressor gene (rb1) cause both sporadic and familial forms of childhood retinoblastoma. Despite its clinical relevance, the roles of rb1 during normal retinotectal development and function are not well understood. We have identified mutations in the zebrafish space cadet locus that lead to a premature truncation of the rb1 gene, identical to known mutations in sporadic and familial forms of retinoblastoma. In wild-type embryos, axons of early born retinal ganglion cells (RGC) pioneer the retinotectal tract to guide later born RGC axons. In rb1 deficient embryos, these early born RGCs show a delay in cell cycle exit, causing a transient deficit of differentiated RGCs. As a result, later born mutant RGC axons initially fail to exit the retina, resulting in optic nerve hypoplasia. A significant fraction of mutant RGC axons eventually exit the retina, but then frequently project to the incorrect optic tectum. Although rb1 mutants eventually establish basic retinotectal connectivity, behavioral analysis reveals that mutants exhibit deficits in distinct, visually guided behaviors. Thus, our analysis of zebrafish rb1 mutants reveals a previously unknown yet critical role for rb1 during retinotectal tract development and visual function.  相似文献   
7.
We studied the population dynamics of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in Billefjorden, Svalbard (78°40N). All three species reproduced in the fjord with different timing. The maximum abundance of Calanus spp. copepodite stages peaked on the 11th of July (29,000 ind m–2). C. glacialis was the dominant species accounting for 60–80% of the total Calanus abundance. C. finmarchicus appear to thrive in the fjord despite the low temperatures (–1.86°C to 5°C) and accounted for 20–30% of the total population. C. hyperboreus contributed less to the total abundance (5–20%). A 1-year life cycle is suggested for C. finmarchicus and C. hyperboreus in the fjord, C. glacialis has a 1- to 2-year life cycle. Highest mortality rates were observed for copepodite stage CV in C. finmarchicus and C. glacialis (0.09 and 0.075 d–1, respectively) and for females in C. hyperboreus (0.149 d–1). Mortality of copepodite stages was substantially lower in C. glacialis than in the other species. This is particularly obvious in the early and numerous copepodite stages (CI + CII) during the period of recruitment to these stages. This suggests that differences in secondary production in Arctic pelagic ecosystems are controlled partly by population loss rates.  相似文献   
8.
Macrophage colony-stimulating factor suppresses osteoblast formation.   总被引:2,自引:0,他引:2  
We provide the first evidence that the bone marrow-derived cytokine, macrophage colony-stimulating factor (M-CSF), inhibits the formation of bone-forming osteoblasts. We examined both osteoclast and osteoblast formation in primary rat bone marrow cultures. As expected, M-CSF together with osteoprotegerin ligand (OPGL) markedly accelerated osteoclastogenesis. In contrast, treatment with M-CSF alone yielded no osteoclasts at any time. The most striking and novel observation was that M-CSF with or without OPGL dramatically suppressed osteoblast formation. In separate experiments, estradiol markedly suppressed osteoclast formation in the M-CSF/OPGL-treated cultures independently of osteoblasts. Consistent with this was the expression of estrogen receptor-alpha (ERalpha) and ERbeta mRNA in osteoclast precursors. We therefore conclude that in addition to the well-known action of M-CSF to modulate osteoclastogenesis, this cytokine may also regulate osteoblast formation.  相似文献   
9.
10.
Genomic conflicts arising during reproduction might play an important role in shaping the striking diversity of reproductive strategies across life. Among these is paternal genome elimination (PGE), a form of haplodiploidy which has independently evolved several times in arthropods. PGE males are diploid but transmit maternally inherited chromosomes only, whereas paternal homologues are excluded from sperm. Mothers thereby effectively monopolize the parentage of sons, at the cost of the father's reproductive success. This creates striking conflict between the sexes that could result in a co‐evolutionary arms race between paternal and maternal genomes over gene transmission, yet empirical evidence that such an arms race indeed takes place under PGE is scarce. This study addresses this by testing whether PGE is complete when paternal genotypes are exposed to divergent maternal backgrounds in intraspecific and hybrid crosses of the citrus mealybug, Planococcus citri, and the closely related Planococcus ficus. We determined whether males can transmit genetic information through their sons by tracking inheritance of two traits in a three‐generation pedigree: microsatellite markers and sex‐specific pheromone preferences. Our results suggest leakages of single paternal chromosomes through males occurring at a low frequency, but we find no evidence for transmission of paternal pheromone preferences from fathers to sons. The absence of differences between hybrid and intraspecific crosses in leakage rate of paternal alleles suggests that a co‐evolutionary arms race cannot be demonstrated on this evolutionary timescale, but we conclude that there is scope for intragenomic conflict between parental genomes in mealybugs. Finally, we discuss how these paternal escapes can occur and what these findings may reveal about the evolutionary dynamics of this bizarre genetic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号