首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   453篇
  免费   36篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   21篇
  2014年   22篇
  2013年   24篇
  2012年   23篇
  2011年   20篇
  2010年   30篇
  2009年   29篇
  2008年   18篇
  2007年   15篇
  2006年   14篇
  2005年   16篇
  2004年   16篇
  2003年   4篇
  2002年   7篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   11篇
  1997年   12篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1990年   3篇
  1989年   7篇
  1988年   10篇
  1987年   3篇
  1986年   3篇
  1985年   10篇
  1984年   6篇
  1983年   9篇
  1982年   17篇
  1981年   6篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   3篇
  1966年   2篇
  1919年   2篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
1.
2.
We have employed high-performance liquid chromatography (HPLC) to investigate the syntheses of histones H1 and H1o as synchronized cells traverse from mitosis to S phase. Chinese hamster (line CHO) cells were synchronized by mitotic selection, and, at appropriate times, they were pulse labeled for 1 h with [3H]lysine. Histones H1 and H1o were extracted by blending radiolabeled and carrier cells directly in 0.83 M HC1O4; the total HC1O4-soluble, Cl3CCO2H-precipitable proteins were then separated by a modification of an HPLC system employing three mu Bondapak reversed-phase columns [Gurley, L. R., D'Anna, J. A., Blumenfeld, M., Valdez, J. G., Sebring, R. J., Donahue, D. K., Prentice, D. A., & Spall, W. D. (1984) J. Chromatogr. 297, 147-165]. These procedures (1) produce minimally perturbed populations of synchronized proliferating cells and (2) maximize the recovery of radiolabeled histones during isolation and analysis. Measurements of rates of synthesis indicate that the rate of H1 synthesis increases (3.6 +/- 0.5)-fold as cells traverse from early to mid G1; as cells enter S phase, the rate of H1 synthesis increases an additional congruent to 22-fold and is proportional to the number of S-phase cells. In contrast to H1, the rate of H1o synthesis is nearly constant throughout G1. As cells progress into S phase, the rate of H1o synthesis increases (3.1 +/- 0.2)-fold so that it also appears to be proportional to the number of S-phase cells. Except for the first 1-2 h after mitotic selection, these results are similar to those obtained when cells are synchronized in G1 with the isoleucine deprivation procedure.  相似文献   
3.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   
4.
5.
6.
7.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号