首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   9篇
  230篇
  2016年   2篇
  2015年   3篇
  2013年   6篇
  2012年   8篇
  2011年   8篇
  2010年   12篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2003年   3篇
  2001年   3篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1992年   5篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   8篇
  1978年   7篇
  1977年   2篇
  1976年   5篇
  1975年   9篇
  1974年   8篇
  1973年   11篇
  1972年   9篇
  1971年   8篇
  1970年   3篇
  1968年   3篇
  1967年   4篇
  1966年   5篇
  1940年   2篇
  1935年   2篇
  1931年   2篇
  1923年   2篇
  1921年   2篇
  1920年   2篇
  1915年   1篇
  1913年   1篇
  1912年   1篇
  1911年   1篇
排序方式: 共有230条查询结果,搜索用时 0 毫秒
1.
We have previously demonstrated that the glucagon receptor binds hormone to form a low affinity complex which, by a time- and temperature-dependent mechanism, is converted to a high affinity complex (Horwitz, E.M., Jenkins, W.T., Hoosein, N.M., and Gurd, R.S. (1985) J. Biol. Chem. 260, 9307-9315). In this report we have investigated the effects of agonist concentration, potency, and intrinsic activity on the characteristics of the two, interconvertible states of the glucagon receptor. As the glucagon concentration is increased from 0.02 to 0.50 nM, the initial velocity of binding increases. The conversion of a low affinity to a high affinity complex is the rate-limiting step in the overall binding reaction and approaches its maximal velocity as the hormone concentration exceeds 0.20 nM. At equilibrium, 87-90% of the hormone-receptor complexes are in the high affinity state at all hormone concentrations examined. [S-methyl-Met27]glucagon, a full agonist with reduced potency, binds to the two-state system in a manner analogous to that of native glucagon. The binding of N alpha-biotinyl-N epsilon-acetimidoglucagon, a partial agonist with reduced potency, effects a two-state system where the high affinity state accounts for only 35% of the total hormone-receptor complexes at equilibrium. We conclude that the formation of the high affinity complex is the rate-limiting step involved in glucagon binding; reduction in binding potency with full agonism is due to a reduction in the affinity of the ligand for the unoccupied receptor and not to an alteration of the interconversion of the two states, and decreased intrinsic activity is due to a quantitative decrease in conversion of the low to high affinity state.  相似文献   
2.
The electrostatic free energy contribution to the stability of sperm whale ferrimyoglobin was evaluated according to the static accessibility modified Tanford-Kirkwood model. The electrostatic free energy contribution of each distinct structural element was divided into one term arising from interactions between it and other elements (interelemental) and another from interactions within the particular element itself (intraelemental). At pH 7 the majority of the terms were found to be stabilizing. The interelemental terms are the dominant ones for most structural elements. The small interelemental terms of the C and D helices are compensated by large intraelemental interactions which stabilize these short helices. Perturbations in pH can be accommodated by the structural elements through a redistribution of stabilizing and destabilizing interactions. The electrostatic potentials calculated at the surface of the protein indicate that the internal compensation of local potentials achieved during folding results in a generally neutral protein-solvent interface save for two distinct areas of nonzero potential. The accessibility of each charged atom to solvent was analyzed in terms of the surface area lost to charged, polar and nonpolar atoms separately. The net solvent accessibility lost parallels closely that lost to nonpolar atoms alone, indicating a specific role for nonpolar atoms in defining dielectric shielding of charged atoms, aside from their participation in the well-known hydrophobic interactions.  相似文献   
3.
pH-dependent processes in proteins   总被引:8,自引:0,他引:8  
Recent improvements in the understanding of electrostatic interactions in proteins serve as a focus for the general topic of pH-dependent processes in proteins. The general importance of pH-dependent processes is first set out in terms of hydrogen ion equilibria, stability, ligand interactions, assembly, dynamics, and events in related molecular systems. The development of various theoretical treatments includes various formalisms in addition to the solvent interface model developed by Shire et al. as an extension of the Tanford-Kirkwood treatment. A number of detailed applications of the model are presented and future potentialities are sketched.  相似文献   
4.
5.
Glycoprotein gp50 is a neurone-specific, granule cell-enriched glycoprotein that is also a major component of isolated synaptic membranes. Here, we describe the use of a monoclonal antibody, mab SM gp50, to study the postnatal development of gp50 in the brain of normal and thyroid-deficient rats. Radioimmunoassay, enzyme-linked immunosorbent assay, and Western blotting show that gp50 is not detectable in brain until postnatal day 4 (P4) in both forebrain and cerebellum. In forebrain, the rate of increase of gp50 levels is maximal between P12 and P20. It is somewhat later in cerebellum, where peak levels are attained between P30 and P35. Immunocytochemical studies show little detectable gp50-like immunoreactivity before P16, and the staining is still weak, relative to adult tissue, at P25. The intense staining of the granule cell layer characteristic of adult cerebellum predominantly appears after P25. Development of gp50 is severely retarded in the cerebellum of thyroid-deficient rats, particularly during the second and third postnatal weeks. However, by the fourth postnatal week, gp50 levels in normal and hypothyroid animals are comparable. The results indicate that significant alterations in the pattern of gp50 expression continue to occur at a late stage of cerebellar development. In particular, the increase in immunocytochemical staining of the granule cells after P25 is striking in that by this time most major events associated with cerebellar development are essentially complete.  相似文献   
6.
The purpose of this study was to evaluate the effect of intense training on physical growth and sexual maturation in young male gymnasts. Physical development, pubertal development, testosterone levels, energy expenditure, and relative body fat were examined in 21 circumpubertal male gymnasts (13.3 +/- 0.3 yr) and 24 age-matched controls (13.5 +/- 0.3 yr). Subjects completed a self-assessment of genital and pubic hair development with the use of the Tanner scale. All subjects were measured for height, weight, and salivary testosterone levels (T). The Physical Activity Questionnaire for Adolescents was used to estimate weekly energy expenditure in metabolic equivalents. Percent body fat (%BF) was assessed by using bioelectrical impedance analysis. Developmental stages and T, as well as height and weight, were not different between groups. Energy expenditure was significantly higher (P 相似文献   
7.
Abstract: The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-γ (PLC-γ). A glutathione S -transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-γ was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-γ and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.  相似文献   
8.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   
9.
An adaptation of the sodium periodate/sodium borotritide procedure for the identification of membrane sialoglycoproteins is described which eliminates interference from nonspecifically incorporated tritium. Synaptic membranes were labeled using the NaIO4NaB3H4 procedure and separated by polyacrylamide gel electrophoresis. Following electrophoresis the gels were fixed, sliced, and individual slices treated with neuraminidase. Treatment with neuraminidase selectively released [3H]sialyl derivatives from the fixed glycoproteins allowing the unambiguous identification of sialoglycoproteins. The sialoglycoprotein composition of synaptic membranes and synaptic junctions was compared.  相似文献   
10.
Depolarization-Dependent Tyrosine Phosphorylation in Rat Brain Synaptosomes   总被引:2,自引:0,他引:2  
Synaptosomes from rat forebrain were analyzed for the presence of phosphotyrosine-containing proteins by immunoblotting with antiphosphotyrosine antibodies. Using this technique, 10-11 phosphotyrosine-containing proteins were detected. Depolarization of synaptosomes by transfer to a high (41 mM) K+ medium resulted in increases in the phosphotyrosine content of several synaptosomal proteins, the most pronounced increase being associated with a membrane protein of M(r) 117,000 (ptp117). Additional proteins exhibiting depolarization-dependent increases in phosphotyrosine content had molecular weights of 39,000, 104,000, 135,000, and 160,000. The depolarization-dependent increase in the phosphotyrosine content of ptp117 was apparent within 30 s of the onset of depolarization, reached a maximum between 3 and 5 min, and then decreased to near control values by 30 min. The increase in tyrosine phosphorylation of ptp117 was dependent on the concentration of K+ in the depolarizing medium and was maximal with [K+] in excess of 50 mM. It was also calcium dependent and did not occur in the absence of extracellular calcium. The addition of veratridine to the incubation medium also resulted in an increase in the tyrosine phosphorylation of ptp117. The results suggest that the phosphorylation of synaptic proteins on tyrosine residues may be involved in the regulation or modulation of synaptic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号