首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有39条查询结果,搜索用时 109 毫秒
1.
Molecular Breeding - The stem color of young mung bean is a very useful tool in germplasm identification. Flowering time and plant height (PH) are known to be strongly correlated with crop adaption...  相似文献   
2.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   
3.
The outcome-dependent sampling (ODS) design, which allows observation of exposure variable to depend on the outcome, has been shown to be cost efficient. In this article, we propose a new statistical inference method, an estimated penalized likelihood method, for a partial linear model in the setting of a 2-stage ODS with a continuous outcome. We develop the asymptotic properties and conduct simulation studies to demonstrate the performance of the proposed estimator. A real environmental study data set is used to illustrate the proposed method.  相似文献   
4.
Zhou L  Huang G  Wang S  Wu J  Lee WG  Chen Y  Xu F  Lu T 《Biotechnology journal》2011,6(12):1466-1476
Cell-based biosensors (CBBs) have emerged as promising biotechnical tools whereby various cell types can be used as basic sensing units to detect external stimuli. Specifically, CBBs have been applied in environmental monitoring, drug screening, clinical diagnosis and biosecurity. For these applications, CBBs offer several advantages over conventional molecular-based biosensors or living animal-based approaches, such as the capability to better mimic physiological situations, to enhance detection specificity and sensitivity, and to detect unknown compounds and toxins. On the other hand, existing CBBs suffer from several limitations, such as weak cell-substrate attachment, two-dimensional (2D) cell microenvironment, and limited shelf life. An emerging method for scaffold-free three-dimensional (3D) cell culture uses hydrogels to encapsulate cells. Advances in novel biomaterials and nano/microscale technologies have enabled encapsulation of cells in hydrogels to fabricate 3D CBBs, which hold great potential for addressing the limitation in existing 2D CBBs. Here, we present an overview of the emerging hydrogel-based CBBs, their applications in pathogen/toxin detection, drug screening and screening of cell-biomaterials interaction, and the associated challenges and potential solutions.  相似文献   
5.
Twelve single segment substitution lines (SSSLs) in rice, which contain quantitative trait loci (QTLs) for tiller number detected previously, were used to study dynamic expression of the QTLs in this study. These SSSLs and their recipient, Hua-Jing-Xian 74 (HJX74), were used to produce 78 crossing combinations first, and then these combinations and their parents were grown in two planting seasons with three cropping densities. Tiller number was measured at seven developmental stages. QTL effects including main effects (additive, dominance and epistasis), QTL?×?season and QTL?×?density interaction effects were analyzed at each measured stage. The additive, dominant and epistatic effects of the 12 QTLs as well as their interaction effects with the seasons and with the densities all display dynamic changes with the development. Eight QTLs are detected with significant additive effects and/or additive?×?season and/or additive?×?density interaction effects at least at one developmental stage, and all QTLs have significant dominant and epistatic effects and/or interaction effects involved in. For most of the QTLs dominant effects are much bigger than additive effects, showing overdominance. Each QTL interacts at least with eight other QTLs. Additive and dominant effects of these QTLs are mostly positive while epistatic effects are negative and minor. Most of the QTLs show significant interactions with planting seasons and cropping densities, but the additive effects of QTLs Tn3-1 and Tn3-2, the dominant effects of QTL Tn7 and Tn8, and the epistatic effects of 14 pairs of QTLs are stable across seasons and the dominant effect of QTL Tn3-3 and the epistatic effects of QTL pairs Tn2-1/Tn6-2, Tn2-1/Tn9 and Tn3-3/Tn6-3 are nearly consistent across cropping densities. This paper is the first report of dynamics on dominances and epistasis of QTLs for tiller number in rice and provides abundant information, which is useful to improve rice tiller number via heterosis and/or QTL pyramiding.  相似文献   
6.
Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-β1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-β1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.  相似文献   
7.
对生物医药产业可持续发展战略的思考   总被引:6,自引:0,他引:6  
全球生物药品销售额以年均约30%的速度增长,大大高于全医药行业年均不到10%的增长速度,生物技术产业已不是几个国家的产业,而是一个全球化发展的产业,由于全球生态环境日益恶化,严重影响了各国发展的后劲,于是它们纷纷将发展生物技术产业作为可持续发展战略的一个重要内容。生物医药产业可持续发展是环境与发展战略的需要,其核心是技术创新,提出了生物医药产业可持续发展链和区域经济竞争力是促进生物医药产业可持续发展的基石,阐述了生物医药产业发展只有立足现实、谋划长远,紧抓发展优势,才能实现可持续发展战略目标。  相似文献   
8.
Cell‐laden microfluidic hydrogels find great potential applications in microfluidics, tissue engineering, and drug delivery, due to their ability to control mass transport and cell microenvironment. A variety of methods have been developed to fabricate hydrogels with microfluidic channels, such as molding, bioprinting, and photopatterning. However, the relatively simple structure available and the specific equipment required limit their broad applications in tissue engineering. Here, we developed a simple method to fabricate microfluidic hydrogels with helical microchannels based on a helical spring template. Results from both experimental investigation and numerical modeling revealed a significant enhancement on the perfusion ability and cell viability of helical microfluidic hydrogels compared to those with straight microchannels. The feasibility of such a helical spring template method was also demonstrated for microfluidic hydrogels with complex three‐dimensional channel networks such as branched helical microchannels. The method presented here could potentially facilitate the development of vascular tissue engineering and cell microenvironment engineering. Biotechnol. Bioeng. 2013; 110: 980–989. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Cardiac fibrosis is a common pathway leading to heart failure and involves continued activation of cardiac fibroblasts (CFs) into myofibroblasts during myocardium damage, causing excessive deposition of the extracellular matrix (ECM) and thus increases matrix stiffness. Increasing evidence has shown that stiffened matrix plays an important role in promoting CF activation and cardiac fibrosis, and several signaling factors mediating CF mechanotransduction have been identified. However, the key molecules that perceive matrix stiffness to regulate CF activation remain to be further explored. Here, we detected significantly increased expression and nuclear localization of Yes-associated protein (YAP) in native fibrotic cardiac tissues. By using mechanically regulated in vitro cell culture models, we found that a stiff matrix-induced high expression and nuclear localization of YAP in CFs, accompanied by enhanced cell activation. We also demonstrated that YAP knockdown decreased fibrogenic response of CFs and that YAP overexpression promoted CF activation, indicating that YAP plays an important role in mediating matrix stiffness-induced CF activation. Further mechanistic studies revealed that the YAP pathway is an important signaling branch downstream of angiotensin II type 1 receptor in CF mechanotransduction. The findings help elucidate the mechanism of fibrotic mechanotransduction and may contribute to the development of new approaches for treating fibrotic diseases.  相似文献   
10.
Uncontrolled TLR4 signaling may induce excessive production of proinflammatory cytokines and lead to harmful inflammation; therefore, negative regulation of TLR4 signaling attracts much attention now. PECAM-1, a member of Ig-ITIM family, can mediate inhibitory signals in T cells and B cells. However, the role and the mechanisms of PECAM-1 in the regulation of TLR4-mediated LPS response in macrophages remain unclear. In this study, we demonstrate that PECAM-1 ligation with CD38-Fc fusion protein negatively regulates LPS-induced proinflammatory cytokine TNF-alpha, IL-6, and IFN-beta production by inhibiting JNK, NF-kappaB, and IFN regulatory factor 3 activation in macrophages. In addition, PECAM-1 ligation-recruited Src homology region 2 domain-containing phosphatase 1 (SHP-1) and Src homology region 2 domain-containing phosphatase 2 (SHP-2) may be involved in the inhibitory effect of PECAM-1 on TLR4 signaling. Consistently, silencing of PECAM-1 enhances the macrophage response to LPS stimulation. Taken together with the data that PECAM-1 is constitutively expressed in macrophages and its expression is up-regulated by LPS stimulation, PECAM-1 might function as a feedback negative regulator of LPS inflammatory response in macrophages. This study may provide a potential target for intervention of inflammatory diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号