首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
PCO2 in the lumen and serosa of cecum and jejunum was measured in mice. The anesthetic used was a fentanyl-fluanisone-midazolam mixture. PCO2 was recorded in vivo and postmortem. PCO2 was 409 +/- 32 Torr (55 +/- 4 kPa) in the cecal lumen and 199 +/- 22 Torr (27 +/- 3 kPa) on the serosa in normal mice. Irrigation of the cecum resulted in serosal and luminal PCO2 levels of 65-75 Torr. Cecal PCO2 was significantly lower in germ-free mice (65 +/- 5 Torr). Cecal PCO2 increased significantly after introduction of normal bacterial flora into germ-free mice. Introduction of bacterial monocultures into germ-free mice had no effect. After the deaths of the mice, cecal PCO2 increased rapidly in normal mice. The intestinal bacteria produced the majority of the cecal PCO2, and the use of tonometry in intestinal segments with a high bacterial activity should be interpreted with caution. We propose that serosal PCO2 levels >150-190 Torr (20-25 kPa) in the cecum of mice with a normal circulation may represent a state of gas supersaturation in the cecal wall.  相似文献   
2.
Free flap surgical procedures are technically challenging, and anastomosis failure may lead to arterial or venous occlusion and flap necrosis. To improve myocutaneous flap survival rates, more reliable methods to detect ischemia are needed. On the basis of theoretical considerations, carbon dioxide tension, reflecting intracellular acidosis, may be suitable indicators of early ischemia. It was hypothesized that tissue carbon dioxide tension increased rapidly when metabolism became anaerobic and would be correlated with acute venoarterial differences in lactate levels, potassium levels, and acid-base parameters. Because metabolic disturbances have been observed to be less pronounced in flaps with venous occlusion, it was hypothesized that tissue carbon dioxide tension and venoarterial differences in lactate and potassium levels and acid-base parameters would increase less during venous occlusion than during arterial occlusion. In 14 pigs, latissimus dorsi myocutaneous flaps were surgically isolated, exposed to acute ischemia for 150 minutes with complete arterial occlusion (seven subjects) or venous occlusion (seven subjects), and reperfused for 30 minutes. After arterial occlusion, pedicle blood flow decreased immediately to less than 10 percent of baseline flow. Blood flow decreased more slowly after venous occlusion but within 3 minutes reached almost the same low levels as observed during arterial occlusion. Venous oxygen saturation decreased from approximately 70 percent to approximately 20 percent, whereas oxygen uptake was almost arrested. Tissue carbon dioxide tension increased to two times baseline values in both groups (p < 0.01). The venoarterial differences in carbon dioxide tension, pH, base excess, glucose levels, lactate levels, and potassium levels increased significantly (p < 0.01). Tissue carbon dioxide tension measured during the occlusion period were closely correlated with venoarterial differences in pH, base excess, glucose levels, lactate levels, and potassium levels (median r2, 0.67 to 0.92). After termination of arterial or venous occlusion, more pronounced hyperemia was observed in the arterial occlusion group than in the venous occlusion group (p < 0.05). Oxygen uptake (p < 0.05) and venoarterial differences in lactate and potassium levels (p < 0.05) were significantly more pronounced in the arterial occlusion group. In the venous occlusion group, with less pronounced hyperemia, venoarterial differences in acid-base parameters remained significantly different from baseline values before occlusion (p < 0.01). The data indicate that tissue carbon dioxide tension can be used to detect anaerobic metabolism, caused by arterial or venous occlusion, in myocutaneous flaps. The correlations between carbon dioxide tension and venoarterial differences in acid-base parameters were excellent. Because carbon dioxide tension can be measured continuously in real time, such measurements are more likely to represent a clinically useful parameter than are venoarterial differences.  相似文献   
3.
PCO(2) in the lumen and serosa of cecum and colon was measured in rats, guinea pigs, and dogs to examine the relationship between serosal PCO(2) and the incidence of intestinal necrotic lesions after administration of gas-carrier contrast agents in rodents. The effects of the dietary substrate were tested in a group of mice maintained on a diet based on glucose as the only carbohydrate source. The anesthetic used was a fentanyl-fluanison-midazolam mixture (rodents) and pentobarbital (dogs). PCO(2) was measured in vivo and postmortem, and the kinetics of the postmortem serosal PCO(2) [transmural CO(2) flux (J(CO(2)))] was calculated. PCO(2) in the cecal serosa and lumen, respectively, was 64 +/- 4 and 392 +/- 18 Torr in rats, 67 +/- 3 and 276 +/- 17 Torr in guinea pigs, and 73 +/- 6 and 137 +/- 7 Torr in mice on glucose-based diet. In the colon serosa and lumen of dogs, PCO(2) was 30 +/- 6 and 523 +/- 67 Torr, respectively. Serosal PCO(2) increased rapidly after death in rats and slower in guinea pigs and mice, and the slowest change was observed in dogs. Compared with dogs, serosal PCO(2) and J(CO(2)) of rats and guinea pigs were significantly higher. Serosal PCO(2) of guinea pigs was similar to that of rats, whereas the J(CO(2)) of guinea pigs was significantly lower. These data suggest a causal relationship between the ability of the cecal and colonic wall to act as a barrier to CO(2) diffusion and the presence of characteristic gas-carrier contrast agent-induced intestinal lesions in mice and rats and their absence in guinea pigs, dogs, and other species.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号