首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   8篇
  131篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   9篇
  2011年   9篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   5篇
  2006年   11篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有131条查询结果,搜索用时 0 毫秒
1.
Summary The Serratia marcescens chiA gene encodes a secreted chitinase activity which contributes to the fungal growth inhibition exhibited by this bacterium. The coding region from the chiA gene was fused to the promoter and 3 polyadenylation region of the Agrobacterium nopaline synthase gene. Site-directed mutagenesis of specific nucleotides surrounding the initiating AUG of the coding sequence of this chimeric gene resulted in up to an eight-fold increase in the amount of chitinase protein detected in transformed plant tissue. Analysis of the chiA mRNA indicated that these nucleotides also affected mRNA levels. At least 50% of the chitinase protein produced in transformed tobacco cells was the same molecular weight as the S. marcescen secreted protein.  相似文献   
2.
K.A. ALBASHERI AND W.J. MITCHELL. 1995. Maltose metabolism in the obligate anaerobe Clostridium acetobutylicum was studied. The sugar is accumulated via an energy-dependent transport process which is not a phosphotransferase. Cell extracts were incapable of phosphorylating maltose in the presence or absence of phosphoenolpyruvate or ATP, but exhibited hydrolytic activity against a range of glucoside substrates. The activity was predominantly in the soluble fraction of cell extracts, indicating a cytoplasmic location in the cell. Gel filtration on Sephadex G100 indicated the presence of at least two α-glucosidases. One enzyme (maltase) was active with maltose and maltotriose, while the other (pNPGase) hydrolysed isomaltose and several glucoside analogues, but neither showed activity against starch. Both glucosidases were induced by isomaltose, maltose, glucose and starch, but not by xylose, sucrose or cellobiose. In the presence of both glucose and maltose, growing cells showed a preference for glucose, apparently due to regulation of maltose transport, which did not occur in glucose-grown cells.  相似文献   
3.
Nitrate nonutilizing (nit) mutants were recovered from 24 isolates of Fusarium poae and used to force heterokaryons between these isolates and to determine vegetative compatibility. Between 30 and 90% of the mycelial blocks, cultured on medium containing chlorate, produced nit mutants. The amount of chlorate in the medium altered the frequency and spectrum of nit mutants recovered. Most of the mutants (63%) had lesions at a nitrate reductase structural locus (nit1). Another 30% were mutants at one or more loci that control the production of a molybdenum-containing cofactor necessary for nitrate reductase activity (NitM). A few (6%) of the mutations occurred in a regulatory gene specific for the nitrate reduction pathway (nit3). Pairings between nit1 and NitM mutants were made on minimal medium containing nitrate as the sole nitrogen source. A mutant grows thinly unless it forms a complementary heterokaryon upon contact with another mutant. Heterokaryon formation was indicated by dense growth where the two mutant colonies touched. The 24 isolates could be divided into 13 nonoverlapping vegetative compatibility groups, suggesting that asexual exchange of genetic information within F. poae is subject to significant limitations.  相似文献   
4.
Substrate specificities of bacterial and human AlkB proteins   总被引:2,自引:3,他引:2  
Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo.  相似文献   
5.
The 2.3 kb resistance plasmid pST94 revealed a new gene (qacG) encoding resistance to benzalkonium chloride (BC), a commonly used quaternary ammonium disinfectant, and the intercalating dye ethidium bromide (Eb) in staphylococci isolated from the food industry. The 107 amino acid QacG protein showing 69.2% identity to the staphylococcal multi-drug resistance protein Smr is a new member of the small multi-drug resistance (SMR) protein family. QacG conferred resistance via proton dependent efflux. An additional ORF on pST94 encoded a protein with extensive similarity to replication proteins of other Gram-positive bacteria. Gene constructs containing the qacG and smr gene region combined with the smr or qacG promoter, respectively, indicated that QacG is more efficient than Smr and that qacG has a weaker promoter. Resistant qacG-containing cells could be adapted to withstand higher concentrations of BC. Adapted qacG-containing cells showed increased resistance mainly to BC. In contrast, adaptation of sensitive cells showed cross-resistance development to a range of compounds. Induction of proton-dependent efflux was observed for BC-adapted staphylococci cells not containing qacG. The ability of sublethal concentrations of BC to develop cross-resistance and induce efflux mechanisms could be of practical significance; it should be considered before use of any new disinfectant and in the design of better disinfection procedures.  相似文献   
6.
In bacteria the oxygen-independent coproporphyrinogen-III oxidase catalyzes the oxygen-independent conversion of coproporphyrinogen-III to protoporphyrinogen-IX. The Escherichia coli hemN gene encoding a putative part of this enzyme was overexpressed in E. coli. Anaerobically purified HemN is a monomeric protein with a native M(r) = 52,000 +/- 5,000. A newly established anaerobic enzyme assay was used to demonstrate for the first time in vitro coproporphyrinogen-III oxidase activity for recombinant purified HemN. The enzyme requires S-adenosyl-l-methionine (SAM), NAD(P)H, and additional cytoplasmatic components for catalysis. An oxygen-sensitive iron-sulfur cluster was identified by absorption spectroscopy and iron analysis. Cysteine residues Cys(62), Cys(66), and Cys(69), which are part of the conserved CXXXCXXC motif found in all HemN proteins, are essential for iron-sulfur cluster formation and enzyme function. Completely conserved residues Tyr(56) and His(58), localized closely to the cysteine-rich motif, were found to be important for iron-sulfur cluster integrity. Mutation of Gly(111) and Gly(113), which are part of the potential GGGTP S-adenosyl-l-methionine binding motif, completely abolished enzymatic function. Observed functional properties in combination with a recently published computer-based enzyme classification (Sofia, H. J., Chen, G., Hetzler, B. G., Reyes-Spindola, J. F., and Miller, N. E. (2001) Nucleic Acids Res. 29, 1097-1106) identifies HemN as "Radical SAM enzyme." An appropriate enzymatic mechanism is suggested.  相似文献   
7.
Pleural cavities are lined by a polarized monolayer of mesothelial cells (MC). During pleuritis, MC are shed into effusions, and pleural obstruction may occur. Integrins are cell surface receptors mediating interactions with extracellular matrix (ECM) proteins. The distribution of beta 1-, beta 3-, beta 4-integrins and fibronectin and laminin in normal and chronically inflamed pleura and in/on MC from pleural effusions was examined by immunomorphology and flow cytometry. Adhesion assays of MC to fibronectin and laminin were performed. In situ, resting MC expressed beta 1-, beta 3-, and beta 4-, and alpha v-subunits. Activated MC were beta 1- and alpha v-positive and also expressed alpha 3 and alpha 6; beta 4 was confined to the basal surface of MC; beta 3 was absent. Floating MC from effusions neoexpressed alpha 5 and reexpressed beta 3. In vitro, MC surface expressed beta 1, beta 3, alpha 3, alpha 5, alpha 6, alpha v, and also alpha 1 and alpha 2. In normal pleura, fibronectin and laminin were components of the basement membrane. In pleuritis, the basement membrane was desintegrated. Instead, newly formed fibronectin/laminin containing fibrils extended into the submesothelial connective tissue. Floating MC freshly isolated from effusions carried fibronectin and laminin on their surface and showed specific binding to these ECM proteins. Binding was blocked by anti-beta 1 or anti-alpha 5 and anti-alpha 6 antibodies, respectively. MC incubated with fibronectin showed a clear shift to the S phase, while laminin had no effect. In conclusion, activated and detached MC progressively enrich their integrin repertoire. By capturing soluble fibronectin and laminin and by matrix-mediated bridging, readhering MC may contribute to pleural obstruction. Further, soluble fibronectin bound to alpha 5 beta 1 might be life-sustaining for floating MC by driving cells into cell cycle.  相似文献   
8.
AIMS: To determine the sensitivity of a strain used for disinfectants testing (Pseudomonas aeruginosa ATCC 15442) and food-associated isolates to benzalkonium chloride and didecyl dimethylammonium chloride (DDAC). To determine whether the increase in bacterial resistance after adaptation to DDAC can be associated with phenotypic changes. To test the activity of alternative disinfectants to eliminate resistant Pseudomonas spp. METHODS AND RESULTS: Pseudomonas aeruginosa ATCC 15442 was among the most resistant strains tested using a bactericidal suspension test. Growth of a sensitive Ps. fluorescens in gradually higher concentrations of DDAC resulted in stable higher resistance and to some cross-resistance to several antibacterial agents, with the exception of disinfectants containing chloramine T, glutaraldehyde or peracetic acid. It was shown by microscopy that adaptation was followed by loss of flagella, and slime formation. Removal of the slime by sodium dodecyl sulphate resulted in partial loss of the acquired resistance. CONCLUSIONS: Pseudomonas spp. may adapt to survive against higher concentrations of quaternary ammonium compounds (QACs), but resistant strains can be eliminated with chemically unrelated disinfectants. SIGNIFICANCE AND IMPACT OF THE STUDY: The work supports the rotation of disinfectants in food processing environments for avoiding the development of bacterial resistance to QACs. The alternating disinfectants should be chosen carefully, because of possible cross-resistance.  相似文献   
9.
'Radical SAM' enzymes generate catalytic radicals by combining a 4Fe-4S cluster and S-adenosylmethionine (SAM) in close proximity. We present the first crystal structure of a Radical SAM enzyme, that of HemN, the Escherichia coli oxygen-independent coproporphyrinogen III oxidase, at 2.07 A resolution. HemN catalyzes the essential conversion of coproporphyrinogen III to protoporphyrinogen IX during heme biosynthesis. HemN binds a 4Fe-4S cluster through three cysteine residues conserved in all Radical SAM enzymes. A juxtaposed SAM coordinates the fourth Fe ion through its amide nitrogen and carboxylate oxygen. The SAM sulfonium sulfur is near both the Fe (3.5 A) and a neighboring sulfur of the cluster (3.6 A), allowing single electron transfer from the 4Fe-4S cluster to the SAM sulfonium. SAM is cleaved yielding a highly oxidizing 5'-deoxyadenosyl radical. HemN, strikingly, binds a second SAM immediately adjacent to the first. It may thus successively catalyze two propionate decarboxylations. The structure of HemN reveals the cofactor geometry required for Radical SAM catalysis and sets the stage for the development of inhibitors with antibacterial function due to the uniquely bacterial occurrence of the enzyme.  相似文献   
10.
The epithelial Na+ channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na+ self-inhibition, and reduced single channel Po when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号