全文获取类型
收费全文 | 48篇 |
免费 | 27篇 |
专业分类
75篇 |
出版年
2022年 | 1篇 |
2018年 | 1篇 |
2017年 | 3篇 |
2016年 | 1篇 |
2012年 | 1篇 |
2010年 | 1篇 |
2008年 | 2篇 |
2006年 | 1篇 |
2003年 | 4篇 |
2002年 | 3篇 |
2000年 | 7篇 |
1999年 | 3篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 2篇 |
1989年 | 7篇 |
1988年 | 3篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
The isolation and characterization of mutants of the integration host factor (IHF) of Escherichia coli with altered, expanded DNA-binding specificities. 总被引:1,自引:0,他引:1
下载免费PDF全文

The integration host factor (IHF) of Escherichia coli is a small, basic protein that is required for lambda site-specific recombination and a variety of cellular processes. It is composed of two subunits, alpha and beta, that are encoded by the himA and hip (himD) genes, respectively. IHF is a sequence-specific DNA-binding protein and bends the DNA when it binds. We have used the bacteriophage P22-based challenge phage selection to isolate suppressor mutants with altered, expanded DNA binding specificities. The suppressors were isolated by selecting mutants that recognize variants of the phage lambda H'IHF recognition site. Two of the mutants recognize both the wild-type and a single variant site and contain amino acid substitutions at positions 64 (Pro to Leu) or 65 (Lys to Ser) of the alpha subunit. These substitutions are in a region of the protein that is predicted to contain a flexible arm that interacts with DNA. Three other mutants, which recognize the wild-type and a different variant site, contain amino acid substitutions at position 44 (Glu to Lys, Val or Gly) of the beta subunit. These substitutions are in the middle of a predicted beta-strand of the subunit. We discuss the possible mechanisms of suppression by the mutants in terms of a model of the IHF-DNA complex proposed by Yang and Nash [Cell, 57, 869-880 (1989)]. 相似文献
2.
Complementation of bacteriophage lambda integrase mutants: evidence for an intersubunit active site. 总被引:11,自引:7,他引:11
下载免费PDF全文

Site-specific recombination of bacteriophage lambda starts with the formation of higher-order protein--DNA complexes, called 'intasomes', and is followed by a series of steps, including the initial DNA cleavage, top-strand exchange, branch migration and bottom-strand exchange, to produce recombinant products. One of the intasomes formed during excisive recombination (the attL complex) is composed of the phage-encoded integrase (Int), integration host factor (IHF) and one of the recombination substrates, attL DNA. Int is the catalytic recombinase and has two different DNA binding domains. When IHF is present, Int binds to two types of sites in attL DNA, the three arm-type sites (P'123) and the core-type sites (B and C') where the reciprocal strand exchange takes place. The Tyr342 residue of Int serves as a nucleophile during strand cleavage and covalently attaches to the DNA through a phosphotyrosyl bond. In vitro complementation assays have been performed for strand cleavage using attL suicide substrates and mutant proteins containing amino acid substitutions at residues conserved in the integrase family of recombinases. We demonstrate that at least two Int monomers are required to form the catalytically-competent species that performs cleavage at the B site. It is likely that the active site is formed by two Int monomers. 相似文献
3.
A genetic selection method, the P22 challenge-phage assay, was used to characterize DNA binding in vivo by the prokaryotic beta class [N:6-adenine] DNA methyltransferase M.RSR:I. M.RSR:I mutants with altered binding affinities in vivo were isolated. Unlike the wild-type enzyme, a catalytically compromised mutant, M.RSR:I (L72P), demonstrated site-specific DNA binding in vivo. The L72P mutation is located near the highly conserved catalytic motif IV, DPPY (residues 65-68). A double mutant, M.RSR:I (L72P/D173A), showed less binding in vivo than did M.RSR:I (L72P). Thus, introduction of the D173A mutation deleteriously affected DNA binding. D173 is located in the putative target recognition domain (TRD) of the enzyme. Sequence alignment analyses of several beta class MTases revealed a TRD sequence element that contains the D173 residue. Phylogenetic analysis suggested that divergence in the amino acid sequences of these methyltransferases correlated with differences in their DNA target recognition sequences. Furthermore, MTases of other classes (alpha and gamma) having the same DNA recognition sequence as the beta class MTases share related regions of amino acid sequences in their TRDs. 相似文献
4.
E Bedows J T Wachsman R I Gumport 《Biochemical and biophysical research communications》1975,67(3):1100-1107
Reports of the existence of eukaryotic RNA ligases may be incorrect. Evidence for this activity has been based upon the conversion of [5′-32p]-terminated oligoribonucleotides to an alkaline phosphatase resistant form and upon the detection of radioactive ribonucleoside monophosphates after alkaline hydrolysis of the reaction products. Although we have in part confirmed these observations, we find the labeled ribonucleoside monophosphate to be the 5′-isomer, and not the expected 2′ (3′)-isomer. In addition, roughly equivalent amounts of ribonucleoside monophosphate were observed whether or not alkaline hydrolysis was performed. We conclude that the existence of RNA ligase activity in eukaryotic cells is suspect. 相似文献
5.
A new affinity reagent for the site-specific, covalent attachment of DNA to active-site nucleophiles: application to the EcoRI and RsrI restriction and modification enzymes.
下载免费PDF全文

A modified oligodeoxyribonucleotide duplex containing an unnatural internucleotide trisubstituted 3' to 5' pyrophosphate bond in one strand [5'(oligo1)3'-P(OCH3)P-5'(oligo2) 3'] reacts with nucleophiles in aqueous media by acting as a phosphorylating affinity reagent. When interacted with a protein, a portion of the oligonucleotide [--P-5'(oligo2)3'] becomes attached to an amino acid nucleophilic group through a phosphate of the O-methyl-modified pyrophosphate linkage. We demonstrate the affinity labeling of nucleophilic groups at the active sites of the EcoRI and RsrI restriction and modification enzymes with an oligodeoxyribonucleotide duplex containing a modified scissile bond in the EcoRI recognition site. With the EcoRI and RsrI endonucleases in molar excess approximately 1% of the oligonucleotide becomes attached to the protein, and with the companion methyltransferases the yield approaches 40% for the EcoRI enzyme and 30% for the RsrI methyltransferase. Crosslinking proceeds only upon formation of a sequence-specific enzyme-DNA complex, and generates a covalent bond between the 3'-phosphate of the modified pyrophosphate in the substrate and a nucleophilic group at the active site of the enzyme. The reaction results in the elimination of an oligodeoxyribonucleotide remnant that contains the 3'-O-methylphosphate [5'(oligo1)3'-P(OCH3)] derived from the modified phosphate of the pyrophosphate linkage. Hydrolysis properties of the covalent protein-DNA adducts indicate that phosphoamide (P-N) bonds are formed with the EcoRI endonuclease and methyltransferase. 相似文献
6.
RsrI [N6-adenine] DNA methyltransferase (M·RsrI), which recognizes GAATTC and is a member of a restriction–modification system in Rhodobacter sphaeroides, was purified to >95% homogeneity using a simplified procedure involving two ion exchange chromatographic steps. Electrophoretic gel retardation assays with purified M·RsrI were performed on unmethylated, hemimethylated, dimethylated or non-specific target DNA duplexes (25 bp) in the presence of sinefungin, a potent inhibitory analog of AdoMet. M·RsrI binding was affected by the methylation status of the DNA substrate and was enhanced by the presence of the cofactor analog. M·RsrI bound DNA substrates in the presence of sinefungin with decreasing affinities: hemimethylated > unmethylated > dimethylated >> non-specific DNA. Gel retardation studies with DNA substrates containing an abasic site substituted for the target adenine DNA provided evidence consistent with M·RsrI extruding the target base from the duplex. Consistent with such base flipping, an ~1.7-fold fluorescence intensity increase was observed upon stoichiometric addition of M·RsrI to hemimethylated DNA containing the fluorescent analog 2-aminopurine in place of the target adenine. Pre-steady-state kinetic and isotope- partitioning experiments revealed that the enzyme displays burst kinetics, confirmed the catalytic competence of the M·RsrI–AdoMet complex and eliminated the possibility of an ordered mechanism where DNA is required to bind first. The equilibrium dissociation constants for AdoMet, AdoHcy and sinefungin were determined using an intrinsic tryptophan fluorescence-quenching assay. 相似文献
7.
8.
Conservation of structure and function among tyrosine recombinases: homology-based modeling of the lambda integrase core-binding domain
下载免费PDF全文

Tyrosine recombinases participate in diverse biological processes by catalyzing recombination between specific DNA sites. Although a conserved protein fold has been described for the catalytic (CAT) domains of five recombinases, structural relationships between their core-binding (CB) domains remain unclear. Despite differences in the specificity and affinity of core-type DNA recognition, a conserved binding mechanism is suggested by the shared two-domain motif in crystal structure models of the recombinases Cre, XerD and Flp. We have found additional evidence for conservation of the CB domain fold. Comparison of XerD and Cre crystal structures showed that their CB domains are closely related; the three central α-helices of these domains are superposable to within 1.44 Å. A structure-based multiple sequence alignment containing 25 diverse CB domain sequences provided evidence for widespread conservation of both structural and functional elements in this fold. Based upon the Cre and XerD crystal structures, we employed homology modeling to construct a three-dimensional structure for the λ integrase CB domain. The model provides a conceptual framework within which many previously identified, functionally important amino acid residues were investigated. In addition, the model predicts new residues that may participate in core-type DNA binding or dimerization, thereby providing hypotheses for future genetic and biochemical experiments. 相似文献
9.
Purification, cloning and sequence analysis of RsrI DNA methyltransferase: lack of homology between two enzymes, RsrI and EcoRI, that methylate the same nucleotide in identical recognition sequences. 总被引:3,自引:10,他引:3
下载免费PDF全文

RsrI DNA methyltransferase (M-RsrI) from Rhodobacter sphaeroides has been purified to homogeneity, and its gene cloned and sequenced. This enzyme catalyzes methylation of the same central adenine residue in the duplex recognition sequence d(GAATTC) as does M-EcoRI. The reduced and denatured molecular weight of the RsrI methyltransferase (MTase) is 33,600 Da. A fragment of R. sphaeroides chromosomal DNA exhibited M.RsrI activity in E. coli and was used to sequence the rsrIM gene. The deduced amino acid sequence of M.RsrI shows partial homology to those of the type II adenine MTases HinfI and DpnA and N4-cytosine MTases BamHI and PvuII, and to the type III adenine MTases EcoP1 and EcoP15. In contrast to their corresponding isoschizomeric endonucleases, the deduced amino acid sequences of the RsrI and EcoRI MTases show very little homology. Either the EcoRI and RsrI restriction-modification systems assembled independently from closely related endonuclease and more distantly related MTase genes, or the MTase genes diverged more than their partner endonuclease genes. The rsrIM gene sequence has also been determined by Stephenson and Greene (Nucl. Acids Res. (1989) 17, this issue). 相似文献
10.
Structure of RsrI methyltransferase, a member of the N6-adenine beta class of DNA methyltransferases
Scavetta RD Thomas CB Walsh MA Szegedi S Joachimiak A Gumport RI Churchill ME 《Nucleic acids research》2000,28(20):3950-3961
DNA methylation is important in cellular, developmental and disease processes, as well as in bacterial restriction-modification systems. Methylation of DNA at the amino groups of cytosine and adenine is a common mode of protection against restriction endonucleases afforded by the bacterial methyltransferases. The first structure of an N:6-adenine methyltransferase belonging to the beta class of bacterial methyltransferases is described here. The structure of M. RSR:I from Rhodobacter sphaeroides, which methylates the second adenine of the GAATTC sequence, was determined to 1.75 A resolution using X-ray crystallography. Like other methyltransferases, the enzyme contains the methylase fold and has well-defined substrate binding pockets. The catalytic core most closely resembles the PVU:II methyltransferase, a cytosine amino methyltransferase of the same beta group. The larger nucleotide binding pocket observed in M. RSR:I is expected because it methylates adenine. However, the most striking difference between the RSR:I methyltransferase and the other bacterial enzymes is the structure of the putative DNA target recognition domain, which is formed in part by two helices on an extended arm of the protein on the face of the enzyme opposite the active site. This observation suggests that a dramatic conformational change or oligomerization may take place during DNA binding and methylation. 相似文献