首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   15篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1941年   1篇
  1888年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
2.
Dextran sulfate, heparin, and certain other sulfated polysaccharides potently inhibit the adsorption of HIV to CD4+ cells. The mechanism of this inhibition is unclear and, specifically, it is unknown if these agents act at the level of CD4-gp120 binding. For example, previous reports have demonstrated that dextran sulfate does not inhibit the cell surface binding of anti-CD4 mAb known to be directed at the gp120 binding site. In order to confirm and extend these observations, in the present study, it was shown that dextran sulfate does not inhibit the binding of OKT4A, OKT4C, Leu3a, or B66.6 to CD4+ cells as measured by cytofluorography. Next, recombinant forms of CD4 (rT4) and gp120 (rgp120) were utilized to directly study their molecular interaction in the absence of other viral or cellular structures. Reciprocal solid phase ELISA assays were developed to study directly the effects of sulfated polysaccharides on the binding of rT4 to immobilized rgp120 and vice versa. Dextran sulfate, heparin, and fucoidan, but not chondroitin sulfate, inhibited the binding of rgp120 to rT4. Importantly, dextran sulfate and heparin pre-treatment of immobilized rT4, but not immobilized rgp120, inhibited rT4-rgp120 binding. Taken together, these data suggest that while both sulfated polysaccharides and anti-CD4 mAb inhibit gp120 binding, the sulfated polysaccharides interact with sites on CD4 that are distinct from those with which the antibodies bind.  相似文献   
3.
We have identified and characterized a new orphan member of the nuclear hormone receptor superfamily, called MB67, which is predominantly expressed in liver. MB67 binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes, both of which consist of a direct repeat hexamers related to the consensus AGGTCA, separated by 5 bp. MB67 binds these elements as a heterodimer with the 9-cis-retinoic acid receptor, RXR. However, MB67 does not bind or activate other retinoic acid response elements with alternative hexamer arrangements or any of several other wild-type and synthetic hormone response elements examined. The transactivation of retinoic acid response elements by MB67 is weaker than that conferred by the retinoic acid receptors but does not require the presence of all-trans retinoic acid, 9-cis-retinoic acid, or any exogenously added ligand. We propose that MB67 plays an important role in the complex network of proteins that govern response to retinoic acid and its metabolites.  相似文献   
4.
5.
Eleven unique cDNA clones corresponding to genes showing enhanced mRNA accumulation in the early stages of salt stress (early salt stress induced, ESI) were previously isolated. The accumulation of these mRNAs in Lophopyrum elongatum (Host) A. Love, salt-sensitive wheat (Triticum aestivum L.), and their amphiploid is compared. The accumulation of ESI mRNAs was much greater in the L. elongatum roots than in the shoots. Additionally, mRNA accumulation in the roots of the three genotypes showed a biphasic response. The first phase occurred within a few hours after the onset of stress and had a large osmotic shock component, as indicated by induction of the accumulation of these mRNAs by a nonsaline osmoticum. The ion-specific component, however, also played a role. External Ca2+ reduced this response. The second phase was characterized by either constantly elevated mRNA levels or gradually increasing mRNA levels. The same biphasic response was elicited by exogenous abscisic acid (ABA). The response of all mRNAs to ABA closely approximated the response to 250 mM NaCl treatment in all three genotypes. The differences among the three genotypes in response to NaCl and ABA treatments were largely confined to the first phase of the response, in which mRNA levels were highest in L. elongatum and lowest in wheat. The levels of ESI mRNAs in the amphiploid closely approximated levels calculated on the basis of the doses of wheat and L. elongatum genomes in the amphiploid, which indicated an additive contribution of the genomes to early salt stress response in the amphiploid. The inducer of the ESI mRNA accumulation in response to NaCl and other osmotica is produced in the stressed roots and shows only minor, if any, translocation. A putative candidate for this inducer is root ABA.  相似文献   
6.
7.
8.
Wu R  Reger AS  Cao J  Gulick AM  Dunaway-Mariano D 《Biochemistry》2007,46(50):14487-14499
Environmental aromatic acids are transformed to chemical energy in bacteria that possess the requisite secondary pathways. Some of these pathways rely on the activation of the aromatic acid by coenzyme A (CoA) thioesterification catalyzed by an aromatic acid: CoA ligase. Adaptation of such pathways to the bioremediation of man-made pollutants such as polychlorinated biphenyl (PCB) and dichlorodiphenyltrichloroethane (DDT) requires that the chlorinated benzoic acid byproduct that is formed be able to be eliminated by further degradation. To take advantage of natural benzoic acid degrading pathways requiring initial ring activation by thioesterification, the pathway aromatic acid:CoA ligase must be an effective catalyst with the chlorinated benzoic acid. This study, which focuses on the 4-chlorobenzoate:CoA ligase (CBL) of the 4-monochlorobiphenyl degrading bacterium Alcaligenes sp. strain ALP83, was carried out to determine if the 4-chlorobenzoate binding site of this enzyme can be transformed by rational design to recognize the chlorobenzoic acids formed in the course of breakdown of other environmental PCB congeners. The fundamental question addressed in this study is whether it is possible to add or subtract space from the substrate-binding pocket of this ligase (to complement the topology of the unnatural aromatic substrate) without causing disruption of the ligase catalytic machinery. Herein, we report the results of a substrate specificity analysis that, when interpreted within the context of the X-ray crystal structures, set the stage for the rational design of the ligase for thioesterification of two PCB-derived chlorobenzoic acids. The ligase was first optimized to catalyze CoA thioesterification of 3,4-dichlorobenzoic acid, a poor substrate, by truncating Ile303, a large hydrophobic residue that packs against the ring meta-C(H) group. The structural basis for the approximately 100-fold enhancement in the rate of 3,4-dichlorobenzoate thioesterification catalyzed by the I303A and I303G CBL mutants was validated by determination of the crystal structure of the 3,4-dichlorobenzoate-bound enzymes. Determinations of the structures of I303 mutant complexes of 3-chlorobenzoate, a very poor substrate, revealed nonproductive binding as a result of the inability of the substrate ring C(4)H group to fill the pocket that binds the C(4)Cl group of the native substrate. The C(4)Cl pocket of the CBL I303A mutant was then reduced in size by strategic amino acid replacement. A 54-fold improvement in catalytic efficiency was observed for the CBL F184W/I303A/V209T triple mutant. The results of this investigation are interpreted as evidence that the plasticity of the ligase catalytic scaffold is sufficient to allow expansion of substrate range by rational design. The combination of structural and kinetic analyses of the constructed mutants proved to be an effective approach to engineering the ligase for novel substrates.  相似文献   
9.
The adenosine monoposphate‐forming acyl‐CoA synthetase enzymes catalyze a two‐step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C‐terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. The structure of an acetoacetyl‐CoA synthetase (AacS) is presented that illustrates a novel aspect of this C‐terminal domain. Specifically, several acetyl‐ and acetoacetyl‐CoA synthetases contain a 30‐residue extension on the C‐terminus compared to other members of this family. Whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N‐terminal domain. Proteins 2015; 83:575–581. © 2014 Wiley Periodicals, Inc.  相似文献   
10.
In vivo and in vitro analysis of cardiac troponin I phosphorylation   总被引:2,自引:0,他引:2  
Adrenergic stimulation induces positive changes in cardiac contractility and relaxation. Cardiac troponin I is phosphorylated at different sites by protein kinase A and protein kinase C, but the effects of these post-translational modifications on the rate and extent of contractility and relaxation during beta-adrenergic stimulation in the intact animal remain obscure. To investigate the effect(s) of complete and chronic cTnI phosphorylation on cardiac function, we generated transgenic animals in which the five possible phosphorylation sites were replaced with aspartic acid, mimicking a constant state of complete phosphorylation (cTnI-AllP). We hypothesized that chronic and complete phosphorylation of cTnI might result in increased morbidity or mortality, but complete replacement with the transgenic protein was benign with no detectable pathology. To differentiate the effects of the different phosphorylation sites, we generated another mouse model, cTnI-PP, in which only the protein kinase A phosphorylation sites (Ser(23)/Ser(24)) were mutated to aspartic acid. In contrast to the cTnIAllP, the cTnI-PP mice showed enhanced diastolic function under basal conditions. The cTnI-PP animals also showed augmented relaxation and contraction at higher heart rates compared with the nontransgenic controls. Nuclear magnetic resonance amide proton/nitrogen chemical shift analysis of cardiac troponin C showed that, in the presence of cTnI-AllP and cTnI-PP, the N terminus exhibits a more closed conformation, respectively. The data show that protein kinase C phosphorylation of cTnI plays a dominant role in depressing contractility and exerts an antithetic role on the ability of protein kinase A to increase relaxation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号