首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
ACTN3 genotype is associated with human elite athletic performance   总被引:12,自引:0,他引:12       下载免费PDF全文
There is increasing evidence for strong genetic influences on athletic performance and for an evolutionary "trade-off" between performance traits for speed and endurance activities. We have recently demonstrated that the skeletal-muscle actin-binding protein alpha-actinin-3 is absent in 18% of healthy white individuals because of homozygosity for a common stop-codon polymorphism in the ACTN3 gene, R577X. alpha-Actinin-3 is specifically expressed in fast-twitch myofibers responsible for generating force at high velocity. The absence of a disease phenotype secondary to alpha-actinin-3 deficiency is likely due to compensation by the homologous protein, alpha-actinin-2. However, the high degree of evolutionary conservation of ACTN3 suggests function(s) independent of ACTN2. Here, we demonstrate highly significant associations between ACTN3 genotype and athletic performance. Both male and female elite sprint athletes have significantly higher frequencies of the 577R allele than do controls. This suggests that the presence of alpha-actinin-3 has a beneficial effect on the function of skeletal muscle in generating forceful contractions at high velocity, and provides an evolutionary advantage because of increased sprint performance. There is also a genotype effect in female sprint and endurance athletes, with higher than expected numbers of 577RX heterozygotes among sprint athletes and lower than expected numbers among endurance athletes. The lack of a similar effect in males suggests that the ACTN3 genotype affects athletic performance differently in males and females. The differential effects in sprint and endurance athletes suggests that the R577X polymorphism may have been maintained in the human population by balancing natural selection.  相似文献   
2.
Bronchopulmonary dysplasia (BPD) continues to be a major cause of morbidity in premature infants. An imbalance between neutrophil elastase and its inhibitors has been implicated in BPD. Serine protease inhibitor (SERPIN)B1 is an inhibitor of neutrophil proteases, including neutrophil elastase (NE) and cathepsin G (cat G). Recent studies suggest that SERPINB1 could provide protection in the airways by regulating excess protease activity associated with inflammatory lung disorders. In this study, we determined the distribution and ontogeny of SERPINB1 in the baboon lung and characterized the expression of SERPINB1 in baboon models of BPD. SERPINB1 expression was detected in the conducting airway and glandular epithelial cells in addition to neutrophils, macrophages, and mast cells. SERPINB1 mRNA and protein expression increased with advancing gestational age and in the new BPD model. In contrast, SERPINB1 expression levels were decreased in the old BPD model. Furthermore, SERPINB1 was detected as a high-molecular-mass (HMM) complex in lung tissue and bronchoalveolar lavage fluid samples from the BPD group. Analysis of the HMM complex by coimmunoprecipitation showed that these complexes were formed between SERPINB1 and NE or cat G. High-performance liquid chromatography (HPLC) ion trap mass spectrometry verified the presence of SERPINB1 in HMM complexes. Finally, NE activity level was compared between new and old baboon models of BPD and was found to be significantly lower in new BPD. Thus SERPINB1 upregulation in new BPD may be protective by contributing to the regulation of neutrophil proteases NE and cat G.  相似文献   
3.
Benthic surveys carried out in 1989 (literature data), 1995, and 2001 (original data) revealed changes in the structure of soft bottom communities of Wrangel Bay (Peter the Great Bay, Sea of Japan), where a deep-water port of Vostochnyi is situated. The functioning of the port has caused no significant environmental pollution by heavy metals, hydrocarbons, and other pollutants. Bottom dredging and the siltation induced by it have drastically lowered the benthos biomass, changed benthic communities, and altered their trophic structure. Sestonophages have disappeared nearly altogether being replaced by detrivores. The ecological state of the benthos is characterized as unstable.  相似文献   
4.
Absract EPAS1 is a gene involved in complex oxygen sensing. It is expressed in microvascular endothelial cells, lung epithelial cells, cardiac myocytes and the brain. An association study was undertaken comparing elite endurance athletes classified into two groups according to a power–time model of performance intensity: power–time-maximum (PT-MAX; N=242, event duration 50 s to 10 min) and power–time–steady state (PT-SS; N=151, event duration ~2–10 h), with normal controls (N=444) using 12 SNPs across EPAS1. Ordinal regression analysis of allele frequencies revealed significant differences at SNPs 2 and 3 (P=0.01). Haplotype analysis revealed the presence of haplotypes involving SNPs 2–5 that significantly differentiated (P<0.05) the groups based on an ordinal ranking using the power–time classification. These same haplotypes differentiated the PT-MAX group in which a significant decrease in a haplotype (F: G-C-C-G; OR=0.57, P=0.02, 95% CI 0.36–0.92) and increase in a second haplotype (G: A-T-G-G; OR=1.75, P=0.03, 95% CI 1.05–2.91) was observed compared to controls. The PT-SS group was differentiated from the PT-MAX group by a third haplotype (H: A-T-G-A; OR=0.46, P=0.04, 95% CI 0.22–0.96). Since EPAS1 has a role as a sensor capable of integrating cardiovascular function, energetic demand, muscle activity and oxygen availability into physiological adaptation, we propose that DNA variants in EPAS1 influence the relative contribution of aerobic and anaerobic metabolism and hence the maximum sustainable metabolic power for a given event duration.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号