首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1981年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有22条查询结果,搜索用时 125 毫秒
1.
2.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   
3.
Although NF-kappaB plays an important role in pancreatitis, mechanisms underlying its activation remain unclear. We investigated the signaling pathways mediating NF-kappaB activation in pancreatic acinar cells induced by high-dose cholecystokinin-8 (CCK-8), which causes pancreatitis in rodent models, and TNF-alpha, which contributes to inflammatory responses of pancreatitis, especially the role of PKC isoforms. We determined subcellular distribution and kinase activities of PKC isoforms and NF-kappaB activation in dispersed rat pancreatic acini. We applied isoform-specific, cell-permeable peptide inhibitors to assess the role of individual PKC isoforms in NF-kappaB activation. Both CCK-8 and TNF-alpha activated the novel isoforms PKC-delta and -epsilon and the atypical isoform PKC-zeta but not the conventional isoform PKC-alpha. Inhibition of the novel PKC isoforms but not the conventional or the atypical isoform resulted in the prevention of NF-kappaB activation induced by CCK-8 and TNF-alpha. NF-kappaB activation by CCK-8 and TNF-alpha required translocation but not tyrosine phosphorylation of PKC-delta. Activation of PKC-delta, PKC-epsilon, and NF-kappaB with CCK-8 involved both phosphatidylinositol-specific PLC and phosphatidylcholine (PC)-specific PLC, whereas with TNF-alpha they only required PC-specific PLC for activation. Results indicate that CCK-8 and TNF-alpha initiate NF-kappaB activation by different PLC pathways that converge at the novel PKCs (delta and epsilon) to mediate NF-kappaB activation in pancreatic acinar cells. These findings suggest a key role for the novel PKCs in pancreatitis.  相似文献   
4.
5.
Bile acids are known to induce Ca(2+) signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca(2+)](i) responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca(2+)](i) responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K gamma-isoform also decreased [Ca(2+)](i) responses to bile acids. Depletion of CCK-sensitive intracellular Ca(2+) pools or application of caffeine inhibited bile acid-induced [Ca(2+)](i) signals, indicating that bile acids release Ca(2+) from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca(2+) in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca(2+) reloading into the ER. Bile acids inhibited Ca(2+) reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP(3), facilitate bile acid-induced [Ca(2+)](i) responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca(2+) reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca(2+)](i) increases and trypsinogen activation mediate key pathological processes in this disorder.  相似文献   
6.
1. The kinetic properties of mitochondrial creatine phosphokinase (Km for all substrates and maximal rates of the forward and reverse reaction) have been studied. Since (a) Km value for MgADP- (0.05 mM) and creatine phosphate (0.5 mM) are significantly lower than Km for MgATP2- (0.7 mM) and creatine (5.0 mM) and (b) maximal rate of the reverse reaction (creatine phosphate + ADP leads to ATP + creatine) equal to 3.5 mumol times min-1 times mg-1 is essentially higher than maximal rate of the forward reaction (0.8 mumol times min-1 times mg-1), ATP synthesis from ADP and creatine phosphate is kinetically preferable over the forward reaction. 2. A possible regulatory role of Mg2+ ions in the creatine phosphokinase reaction has been tested. It has been shown that in the presence of all substrates and products of the reaction the ratio of the rates of forward and reverse reactions can be effectively regulated by the concentration of Mg2+ ions. At limited Mg2+ concentrations creatine phosphate is preferably synthesized while at high Mg2+ concentrations (more ATP in the reaction medium) ATP synthesis takes place. 3. The kinetic (mathematical) model of the mitochondrial creatine phosphokinase reaction has been developed. This model accounts for the existence of a variety of molecular forms of adenine nucleotides in solution and the formation of their complexes with magnesium. It is based on the assumption that the mitochondrial creatine phosphokinase reactions mechanism is analogous to that for soluble isoenzymes. 4. The dependence of the overall rate of the creatine phosphokinase reaction on the concentration of total Mg2+ ions calculated from the kinetic model quantitatively correlates with the experimentally determined dependence through a wide range of substrates (ATP, ADP, creatine and creatine phosphate) concentration. The analysis of the kinetic model demonstrates that the observed regulatory effect of Mg2+ on the overall reaction rate can be expained by (a) the sigmoidal variation in the concentration of the MgADP- complex resulting from the competition between ATP AND ADP for Mg2+ and (b) the high affinity of the enzyme to MgADP-. 5. The results predicted by the model for the behavior of mitochondrial creatine phosphokinase under conditions of oxidative phosphorylation point to an intimate functional interaction of mitochondrial creatine phosphokinase and ATP-ADP translocase.  相似文献   
7.
One reason why pancreatic cancer is so aggressive and unresponsive to treatments is its resistance to apoptosis. We report here that reactive oxygen species (ROS) are a prosurvival, antiapoptotic factor in pancreatic cancer cells. Human pancreatic adenocarcinoma MIA PaCa-2 and PANC-1 cells generated ROS, which was stimulated by growth factors (serum, insulin-like growth factor I, or fibroblast growth factor-2). Growth factors also stimulated membrane NAD(P)H oxidase activity in these cells. Both intracellular ROS and NAD(P)H oxidase activity were inhibited by antioxidants tiron and N-acetylcysteine and the inhibitor of flavoprotein-dependent oxidases, diphenylene iodonium, but not by inhibitors of various other ROS-generating enzymes. Using Rho(0) cells deficient in mitochondrial DNA, we showed that a nonmitochondrial NAD(P)H oxidase is a major source of growth factor-induced ROS in pancreatic cancer cells. Among proteins that have been implicated in NAD(P)H oxidase activity, MIA PaCa-2 and PANC-1 cells do not express the phagocytic gp91(phox) subunit but express several nonphagocytic oxidase (NOX) isoforms. Transfection with Nox4 antisense oligonucleotide inhibited NAD(P)H oxidase activity and ROS production in MIA PaCa-2 and PANC-1 cells. Inhibiting ROS with the antioxidants, Nox4 antisense, or MnSOD overexpression all stimulated apoptosis in pancreatic cancer cells as measured by internucleosomal DNA fragmentation, phosphatidylserine externalization, cytochrome c release, and effector caspase activation. The results show that growth factor-induced ROS produced by NAD(P)H oxidase (probably Nox4) protect pancreatic cancer cells from apoptosis. This mechanism may play an important role in pancreatic cancer resistance to treatment and thus represent a novel therapeutic target.  相似文献   
8.
Calcium is a key mediator of hormone-induced enzyme secretion in pancreatic acinar cells. At the same time, abnormal Ca(2+) responses are associated with pancreatitis. We have recently shown that inhibition of phosphatidylinositol 3-kinase (PI3-kinase) by LY-294002 and wortmannin, as well as genetic deletion of PI3-kinase-gamma, regulates Ca(2+) responses and the Ca(2+)-sensitive trypsinogen activation in pancreatic acinar cells. The present study sought to determine the mechanisms of PI3-kinase involvement in Ca(2+) responses induced in these cells by CCK and carbachol. The PI3-kinase inhibitors inhibited both Ca(2+) influx and mobilization from intracellular stores induced by stimulation of acini with physiological and pathological concentrations of CCK, as well as with carbachol. PI3-kinase inhibition facilitated the decay of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) oscillations observed in individual acinar cells. The PI3-kinase inhibitors decreased neither CCK-induced inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] production nor Ins(1,4,5)P(3)-induced Ca(2+) mobilization, suggesting that the effect of PI3-kinase inhibition is not through Ins(1,4,5)P(3) or Ins(1,4,5)P(3) receptors. PI3-kinase inhibition did not affect Ca(2+) mobilization induced by thapsigargin, a specific inhibitor of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). Moreover, SERCA blockade with thapsigargin abolished the effects of pharmacological and genetic PI3-kinase inhibition on [Ca(2+)](i) signals, suggesting SERCA as a downstream target of PI3-kinase. Both pharmacological PI3-kinase inhibition and genetic deletion of PI3-kinase-gamma increased the amount of Ca(2+) in intracellular stores during CCK stimulation. Finally, addition of the PI3-kinase product phosphatidylinositol 3,4,5-trisphosphate to permeabilized acini significantly attenuated Ca(2+) reloading into the endoplasmic reticulum. The results indicate that PI3-kinase regulates Ca(2+) signaling in pancreatic acinar cells through its inhibitory effect on SERCA.  相似文献   
9.
Mechanisms of cell death in pancreatitis remain unknown. Parenchymal necrosis is a major complication of pancreatitis; also, the severity of experimental pancreatitis correlates directly with necrosis and inversely with apoptosis. Thus, shifting death responses from necrosis to apoptosis may have a therapeutic value. To determine cell death pathways in pancreatitis and the possibility of necrosis/apoptosis switch, we utilized the differences between the rat model of cerulein pancreatitis, with relatively high apoptosis and low necrosis, and the mouse model, with little apoptosis and high necrosis. We found that caspases were greatly activated during cerulein pancreatitis in the rat but not mouse. Endogenous caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP) underwent complete degradation in the rat but remained intact in the mouse model. Furthermore, XIAP inhibition with embelin triggered caspase activation in the mouse model, implicating XIAP in caspase blockade in pancreatitis. Caspase inhibitors decreased apoptosis and markedly stimulated necrosis in the rat model, worsening pancreatitis parameters. Conversely, caspase induction with embelin stimulated apoptosis and decreased necrosis in mouse model. Thus, caspases not only mediate apoptosis but also protect from necrosis in pancreatitis. One protective mechanism is through degradation of receptor-interacting protein (RIP), a key mediator of "programmed" necrosis. We found that RIP was cleaved (i.e. inactivated) in the rat but not the mouse model. Caspase inhibition restored RIP levels; conversely, caspase induction with embelin triggered RIP cleavage. Our results indicate key roles for caspases, XIAP, and RIP in the regulation of cell death in pancreatitis. Manipulating these signals to change the pattern of death responses presents a therapeutic strategy for treatment of pancreatitis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号