首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   4篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有42条查询结果,搜索用时 234 毫秒
1.
We have studied the role of second messenger and protein phosphorylation pathways in mediating changes in neuronal function associated with opiate addiction in the rat locus coeruleus. We have found that chronic opiates increase levels of the G-protein subunits Gi and Go, adenylate cyclase, cyclic AMP-dependent protein kinase, and a number of phosphoproteins (including tyrosine hydroxylase) in this brain region. Electrophysiological data have provided direct support for the view that this up-regulation of the cyclic AMP system contributes to opiate tolerance, dependence, and withdrawal exhibited by these neurons. As the adaptations in G-proteins and the cyclic AMP system appear to occur at least in part at the level of gene expression, current efforts are aimed at identifying the mechanisms, at the molecular level, by which opiates regulate the expression of these intracellular messenger proteins in the locus coeruleus. These studies will lead to an improved understanding of the biochemical basis of opiate addiction.Special issue dedicated to Dr. Paul Greengard  相似文献   
2.
Summary A method is described for the sequential study of synaptonemal complexes by light and electron microscopy. The method is easy, permits one to determine the geometry of chromosome pairing, and should become a routine procedure in the diagnosis of human male subfertility. It should also be useful to establish the risk of recurrence of chromosome aberrations in the progeny of carriers of chromosome rearrangements.This paper is dedicated to the memory of Prof. Gerónimo Forteza Bover, the pioneer of human genetics in Spain, an excellant teacher and a good friend  相似文献   
3.
The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.  相似文献   
4.
Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single‐site, cross‐sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I‐stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI‐stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/β‐actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI‐stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new‐borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.  相似文献   
5.
Oxygen (O2) concentrations in bone marrow vary from 4% in capillaries to <0.1% in subendosteum, in which hematopoietic stem cells reside in specific niches. Culture at low O2 concentrations (3, 1 and 0.1%) influences hematopoietic stem and progenitor cells survival, proliferation and differentiation, depending on their level of differentiation. Culture of human CD34+ cells at low O2 concentrations (O2 ⩽3%) maintains stem cell engraftment potential better than at 20% O2 (NOD/Scid xenograft model). In contrast, progenitors disappear from cultures at/or <1% O2 concentrations. A very low O2 concentration (0.1%) induces CD34+ quiescence in G0. The exploration of molecules and mechanisms involved in hematopoietic stem and progenitor cells'' quiescence and differentiation related to low O2 concentrations is unfeasible with primary CD34+ cells. Therefore, we performed it using murine hematopoietic nonleukemic factor-dependent cell Paterson (FDCP)-Mix progenitor cell line. The culture of the FDCP-Mix line at 0.1% O2 induced in parallel G0 quiescence and granulo-monocytic differentiation of most cells, whereas a minority of undifferentiated self-renewing cells remained in active cell cycle. Hypoxia also induced hypophosphorylation of pRb and increased the expression of p27KIP1, the two proteins that have a major role in the control of G0 and G1 to S-phase transition.  相似文献   
6.
Aminoacyl-tRNA synthetases (ARS) are modular enzymes that aminoacylate transfer RNAs (tRNA) for their use by the ribosome during protein synthesis. ARS are essential and universal components of the genetic code that were almost completely established before the appearance of the last common ancestor of all living species. This long evolutionary history explains the growing number of functions being discovered for ARS, and for ARS homologues, beyond their canonical role in gene translation. Here we present a previously uncharacterized paralogue of seryl-tRNA synthetase named SLIMP (seryl-tRNA synthetase-like insect mitochondrial protein). SLIMP is the result of a duplication of a mitochondrial seryl-tRNA synthetase (SRS) gene that took place in early metazoans and was fixed in Insecta. Here we show that SLIMP is localized in the mitochondria, where it carries out an essential function that is unrelated to the aminoacylation of tRNA. The knockdown of SLIMP by RNA interference (RNAi) causes a decrease in respiration capacity and an increase in mitochondrial mass in the form of aberrant mitochondria.  相似文献   
7.
8.
9.
Trypanosomatids are important human pathogens that form a basal branch of eukaryotes. Their evolutionary history is still unclear as are many aspects of their molecular biology. Here we characterize essential components required for the incorporation of serine and selenocysteine into the proteome of Trypanosoma. First, the biological function of a putative Trypanosoma seryl-tRNA synthetase was characterized in vivo. Secondly, the molecular recognition by Trypanosoma seryl-tRNA synthetase of its cognate tRNAs was dissected in vitro. The cellular distribution of tRNA(Sec) was studied, and the catalytic constants of its aminoacylation were determined. These were found to be markedly different from those reported in other organisms, indicating that this reaction is particularly efficient in trypanosomatids. Our functional data were analyzed in the context of a new phylogenetic analysis of eukaryotic seryl-tRNA synthetases that includes Trypanosoma and Leishmania sequences. Our results show that trypanosomatid seryl-tRNA synthetases are functionally and evolutionarily more closely related to their metazoan homologous enzymes than to other eukaryotic enzymes. This conclusion is supported by sequence synapomorphies that clearly connect metazoan and trypanosomatid seryl-tRNA synthetases.  相似文献   
10.
Analysis of sperm karyotypes and two-color fluorescent in situ hybridization (FISH) on sperm nuclei were carried out in a man heterozygous for the pericentric inversion inv(9)(p11q13). Sperm chromosome complements were obtained after in vitro fusion of zona-free hamster oocytes and donor sperm. A total of 314 sperm complements was analyzed: 153 (48.7%) carried the inverted chromosome 9 and 161 (51.3%) carried the normal one. None of the sperm complements contained a recombinant chromosome 9, suggesting that no chiasmata were formed in the heterochromatic region. The frequency of structural chromosome aberrations unrelated to the inversion (8.3%) and the frequency of conservative aneuploidy (3.2%) were within the limits observed in our control donors. The proportions of X-bearing (47.3%) and Y-bearing sperm (52.7%) were not significantly different from the expected 1:1 ratio. The percentage of disomy for chromosome 21 was analyzed by two-color FISH in 10 336 sperm nuclei. The disomy rate for chromosome 21 (0.30%) was not significantly different from that found in our controls. These results suggest that the risk for this man of producing chromosomally abnormal offspring or spontaneous abortions was not increased, and do not support the existence of an interchromosomal effect for chromosome 21. Received: 28 October 1996  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号